
A formal programming model for Bitcoin
transactions

a master’s thesis
by

Bjarne Magnussen
to

The Department of Mathematics and Computer Science

For the degree of
Master of Science
in the subject of

Applied mathematics

University of Southern Denmark
Odense, Denmark

June 2016

Supervisor: Fabrizio Montesi
Co-superadvisor: Luís Cruz-Filipe

This thesis was timestamped on
the 1st of June 2016 using the Bitcoin
blockchain. A verification of it can be

done online at proofofexistence.com. The
above illustration depicts a honey badger,
which has become a beacon for those who
believe that digital currency is destined to
take over the financial world. This document
was typeset using the X ELATEX typesetting
system. The font used for the body text was
set with Arno Pro, designed by Robert
Slimbach in the style of book types from the
Aldine Press in Venice, and issued by Adobe
in 2007. Mathematics was set with
XITSMath. A template, which can be
used to format a thesis with this look and
feel, has been released under the permissive
mit (x11) license, and can be found online
at github.com/suchow/ or from the author
at suchow@post.harvard.edu.

https://proofofexistence.com/
https://github.com/suchow/
mailto:suchow@fas.harvard.edu

— Money …? in a voice that rustled.
— Paper, yes.
— And we’d never seen it. Paper money.
— We never saw paper money till we came east.
— It looked so strange the first time we saw it. Lifeless.
— You couldn’t believe it was worth a thing.

William Gaddis, J R

Abstract

Bitcoin is a decentralized peer-to-peer electronic currency system. As its basis serves a
composition of different areas in computer science, such as distributed systems and cryptogra-
phy. The first part of this thesis describes the mechanisms behind Bitcoin in detail.

Transactions inBitcoin contain a list of instructionsdescribinghow the transferredbitcoins
can be spend again by e.g. the recipient. This list of instructions has an underlying scripting
system, which uses a programming language called Script. It allows not only to send bitcoins
from a sender A to a receiver B, but to express complex conditions for spending. Script is a
very low-level language based on a stackmachinewithout support for abstractions. The second
part of this thesis contains the main focus of my research and regards this scripting system. A
formal model was created to reason about the syntax and semantics of Script. This allowed to
identify potential errors that can occur in the programming and execution of scripts. A high-
level language was then developed, which introduces abstractions such as variables and a type
system to prevent erroneous scripts frombeing compiled. Finally the applicability of the newly
developed language was investigated using existing scenarios of scripts that resemble complex
contracts in transactions.

Contents

Preface xi

Glossary xiii

1 Introduction 1

2 Mathematical prerequisites 5
2.1 Hash functions . 5
2.2 Hash pointers . 7
2.3 Public-key cryptography . 8
2.4 Digital signatures . 11

I The system of Bitcoin 13

3 A brief history of cryptocurrencies 15

4 Transaction system 19
4.1 A simple cryptocurrency: Version 1 . 19
4.2 Data structure for Bitcoin transactions . 21
4.3 Bitcoin Addresses: The Account numbers of Bitcoin 27
4.4 Proof of ownership of a Bitcoin address 29

5 Decentralization using a distributed ledger 31
5.1 Use of a public ledger with the simple cryptocurrency: Version 2 31
5.2 General consensus protocols . 33
5.3 Making the simple crypocurrency decentralized: Version 3 35
5.4 The Bitcoin Blockchain . 37
5.5 Changing consensus rules . 46

viii Contents

II A programmingmodel 49

6 The Script language 51
6.1 A model for Script . 51
6.2 Script words – commands and functions 60
6.3 Signature checking . 73

7 Variables and abstractions 81
7.1 Variables . 82
7.2 Expressions . 83
7.3 Programs . 89
7.4 Type system . 101
7.5 Theoretical results . 107
7.6 Optimisations . 109

8 Applications and implementations 115
8.1 Basic examples . 116
8.2 Programmable transaction chains . 120
8.3 Discussion of applications . 135

9 What does the future hold? 137
9.1 Restructuring: Segregated Witness . 138
9.2 Academic recognition . 139

Appendices 141

A List of opcodes 143

References 151

Tables

Table 4.2.1 The data structure of a Bitcoin transaction 23
Table 4.2.2 The data structure of an input to a Bitcoin transaction 26
Table 4.2.3 The data structure of an output to a Bitcoin transaction 26

Table 6.1.1 The execution of a Pay-To-PubKey transaction type 56
Table 6.1.2 The execution of a Pay-To-PubKey-Hash transaction type 58
Table 6.2.1 The Script program of a transaction containing a hash puzzle 66
Table 6.3.1 A serialized transaction containing one input and one output 75

Preface

Before you lies the thesis “A formal programming model for Bitcoin transactions”. I was engaged
in researching and writing this thesis in the months from June 2015 to June 2016. I first heard
about Bitcoin in 2011, when reading about it online. I was immediately fascinated by its techni-
cal principles. Incidentally I hope that this thesis can convince you that technologically Bitcoin
is deep, novel, fascinating, and based on sound principles. Bitcoin has opened up a new world
that has just started to be explored.

Being engaged with Bitcoin, it is nearly impossible to not also be influenced by its non-
technical sides. Especially in its early days, Bitcoin seemed to have polarized opinions. Person-
ally though, it has widened my comprehension of what money is, both economically, politi-
cally, and psychologically.

I am therefore grateful of having been able to writemy thesis on Bitcoin under supervision
by FabrizioMontesi and Luís Cruz-Filipe, who helpedme to formulate the aim of this research,
and were always available and willing to answer my questions. I would like to thank them for
their guidance and support during this whole process.

The research was difficult, and at times frustrating. Bitcoin has emerged out of the cypher-
punk community, and information can sometimes be cluttered in different forums or mailing
lists on the internet. Especially the books “Mastering Bitcoin”, by Andreas Antonopoulos and
“Bitcoin and Cryptocurrency Technologies”, by Arvind Narayanan were of great preliminary
value to me. However, documentation is impossible to comprise all of Bitcoin, and therefore
I had sometimes to investigate the source code on specific details. But it has been with great
pleasure and passion that I was able to conduct this research on Bitcoin.

Odense, May 2016 Bjarne Magnussen

Glossary

address A bitcoin address looks like 1DSrf JdB2AnWaFNgSbv3MZC2m74996Jaf V. It con-
sists of a string of letters and numbers starting with a ”1” (number one). Just like you ask
others to send an email to your email address, you would ask others to send you bitcoin
to your bitcoin address.

bip Bitcoin Improvement Proposals. A set of proposals that members of the bitcoin commu-
nity have submitted to improve bitcoin.

bitcoin The name of the currency unit, the network, and the software.

block A grouping of transactions, marked with a timestamp, and a fingerprint of the previous
block. The block header is hashed to produce a proof of work, thereby validating the
transactions. Valid blocks are added to the main blockchain by network consensus.

blockchain A list of validated blocks, each linking to its predecessor all the way to the genesis
block.

confirmations Once a transaction is included in a block, it has one confirmation. As soon as
another block is mined on the same blockchain, the transaction has two confirmations,
and so on. Six or more confirmations is considered sufficient proof that a transaction
cannot be reversed.

difficulty Anetwork-wide setting that controls howmuchcomputation is required toproduce
a proof of work.

difficulty retargeting A network-wide recalculation of the difficulty that occurs once every
2.106 blocks and considers the hashing power of the previous 2.106 blocks.

xiv Glossary

difficulty target A difficulty at which all the computation in the network will find blocks ap-
proximately every 10 minutes.

fees The sender of a transaction often includes a fee to the network for processing the re-
quested transaction. Most transactions require a minimum fee of 0,5 mBTC.

genesis block The first block in the blockchain, used to initialize the cryptocurrency.

input An input in a transaction contains four fields: an outpoint, a unlocking script, and a
sequence number. The outpoint references a previous output, and the unlocking script
allows spending it.

lock script The script that is used in each output and “locks” the amount of bitcoins to the
conditions specified inside it.

miner A network node that finds valid proof of work for new blocks, by repeated hashing.

output An output in a transaction contains two fields: a value field for transferring zero or
more satoshis and a lock script for indicating what conditionsmust be fulfilled for those
satoshis to be further spent.

Proof-Of-Work A piece of data that requires significant computation to find. In bitcoin, min-
ers must find a numeric solution to the SHA256 algorithm that meets a network-wide
target, the difficulty target.

reward An amount included in each new block as a reward by the network to the miner who
found the Proof-Of-Work solution. It is currently 25BTC per block.

satoshi Denominations of Bitcoin value, usually measured in fractions of a bitcoin but some-
times measured in multiples of a satoshi. One bitcoin equals 100.000.000 satoshis.

scriptPubKey See lock script.

scriptSig See unlocking script.

Glossary xv

transaction In simple terms, a transfer of bitcoins from one address to another. More pre-
cisely, a transaction is a signed data structure expressing a transfer of value. Transactions
are transmitted over the bitcoin network, collected byminers, and included into blocks,
made permanent on the blockchain.

unlocking script The script that is used in inputs and “unlocks” the referenced output by sat-
isfying its corresponding lock script.

The one thing that’s missing, but that will soon be developed,
is a reliable e-cash. A method where buying on the Internet
you can transfer funds from A to B, without A knowing B or B
knowing A.

Milton Friedman

1
Introduction

Bitcoin is anonline payment system released as open-source software in 2009. In the sys-
tem, units of currency called bitcoins are used to store and transmit value amongparticipants in
the bitcoin network. Thenetwork is peer-to-peer: transactions are verified by the participating
nodes and recorded in a public distributed ledger called the blockchain, of which every peer
has a copy.

Bitcoin combines different areas of research and technologies, such as but not limited to
public/private key cryptography, distributed peer-to-peer networks and game theory. Unlike
traditional currencies, bitcoins are entirely virtual. There are no physical coins or even digi-
tal coins per se. The coins are implied in transactions that transfer value from sender to re-
cipient. Transactions contain a list of instructions that describe how the bitcoins being trans-
ferred can be spent again by, e.g., their new owners. The list of instructions in a transaction is
programmable with a programming language called Script, enabling the execution of complex
transactions. For example, a multisignature transaction may specify that three parties control
an account jointly, but any combination of two can together spend received funds. This can

2 1. Introduction

be applied, e.g., to add an escrow functionality to the otherwise irreversible Bitcoin transac-
tions. Andrychowicz et al. showed how Bitcoin transactions can also be programmed and im-
plemented to allow for SecureMultipartyComputation [2]. The focus of this thesis regards the
way in which Bitcoin transactions can be conditionally programmed using this programming
language called Script.

Part 1 of this thesis regards the underlyingmechanisms on howBitcoin works. It describes
and combines all the technologies that make up Bitcoin. From part 1, mainly Chapter 4 about
the transaction structure is of particular importance for the aim of this thesis, while the rest
of part 1 can be read to obtain a better general understanding on how Bitcoin works. Part 2
contains the predominant piece of work of this thesis.

Motivation

Even though there has already been done considerable research on the security, stability and
scalability of the Bitcoin network itself, there is still only considerably little knowledge about
the Script programming language and its implications on Bitcoin transactions. Understanding
this aspect is challenging, since Script is a very low-level language based on a stack machine
without support for high-level programming abstractions, e.g., iteration control like for-loops.

Sophisticated applications can nevertheless be implemented in Bitcoin, of which Script
constitute the cornerstone. Script is an important and integral part of theBitcoin system,which
needs further investigation.

Aim

In thismaster thesis, wewant to investigate the theoretical underpinningsof theBitcoinblockchain
technology, with particular focus on the Script programming language.

Contributions

The key development will be the creation of a formal model to reason about the syntax and
semantics of Script programs. I will use the model to identify some potential errors that can
occur in the programming and execution of Script programs, which could otherwise lead to
permantently unspendable transactions. Then I will develop a high-level language featuring
constructs that prevent such errors, equipped with a compiler towards Script. Finally, I will

3

evaluate my approach against existing applications implemented in Script, showing the appli-
cability of the newly developed language, and also set it in perspective to future compatibility
of the Bitcoin system.

Conclusion

Thedetails regarding the Bitcoin transaction structure and spendingmechanisms are complex,
complicated and in some cases cumbersome. Using a mathematical formalized model there-
fore allows to formally reason about them.

The high-level programming language developed in this thesis is called NextScript and
uses a type system to prevent execution of erroneous programs. Further abstraction was in-
troduced with variables, which Script lacks. Variables allow to program and analyze code in a
more straight forward manner. But specifically with Script in mind, they also rigorously and
predictably define how the bitcoins in a transaction can be spent again. Compact Script pro-
grams are favourable. But for the sake of having a tightly structured compiler, its limitation lies
in the production of optimized Script code.

Lastly, there is a lot of developmenthappening inBitcoin. Since it is anopen-sourceproject,
in principle anyone can contribute to it. Some ideas are discarded long before even their impli-
cations are considered, but others are actively developed and employed into Bitcoin. It stands
left to be seen if the use of complex Script programs in Bitcoin will ever seriously take off. But
evidence point in that direction for the future.

Three eras of currency
Commodity based, e.g. Gold
Politically based, e.g. Dollar
Math based, e.g. Bitcoin

Chris Dixon

2
Mathematical prerequisites

As a prerequisite for understanding how cryptocurrencies and Bitcoin in particular
work, some basic properties and cryptographic methods will be presented in this chapter.

2.1 Hash functions

Bitcoin extensively uses cryptographic hash functions. A hash function is amathematical func-
tion with the following properties:

• the input can be a string of any size,

• the output is of fixed size, typically denoted in the number of bits, and

• it is efficiently computable, typically in linear time.

Some of themore general and important properties for hash functions used in Bitcoin will
be described with more details now. Additional and more specific properties for Bitcoin will
be discussed later on, when they will be useful for the understanding of the Bitcoin protocol.

6 2. Mathematical prerequisites

Properties of hash functions

Collisions are said to occur when two distinct inputs produce the same hash as output. By a
simple counting argument, it is obvious that collisions must exist in every hash function, since
the input space to a hash function contains strings of all lengths, but the output space is of
specific length.

One can therefore always find a collision by calculating the hash for a number of distinct
inputs corresponding to the number of total possible outputs, and then one more. But this
brute force method is infeasible, since the calculation required grows exponentially with the
size of the output space for the hash function. Although in practice, finding a collision using
the birthday attack [20] only requires examining the square root of the number of possible
outputs; this is still an astronomically large number for common hash functions with 256-bit
outputs and therefore still infeasible.

This does not guarantee that there never exists an easy method to find collisions for a hash
functionwith a sufficiently largeoutput space though. Thehash functionH(x) = x mod 2256

for example has anoutput space of 256bits. But for any input a collision can easily be calculated
by just adding 2256 to it.

Hash functions, forwhichno sucheasymethods areknown toexist, are considered collision-
resistant. However, for many hash functions once thought to be collision-resistant, techniques
have been found that are more efficient than brute forcing [23, 24]. Although no hash func-
tion has been directly proven to be collision-resistant, some of them are provably secure, which
means that finding collisions is proven to be at least as difficult as some hard mathematical
problem (such as integer factorization or discrete logarithm) [20].

Property 1: Collision-resistance: A hash function H is said to be collision resistant if it
is infeasible to find two values, x and y, such thatH(x) = H(y), but x ̸= y.

One of many immediate applications for collision-free hash functions, is as a message di-
gest. The hash of any string then serves as a fixed length digest, or unambiguous summary, for
themessage. For two given hash value outputsH(x) andH(y) from a collision-free hash func-
tion, it is safe to assume that their inputs must also be different. Therefore, knowing the hash
value to amessage serves as a guaranty that we can always check the integrity of themessage by
checking that it produces the same hash value. Furthermore, by just making minimal changes
to the message, most hash functions will create a completely different hash, making it easy to
spot a manipulation even for the human eye.

2.2. Hash pointers 7

The next property to be discussed is the hiding property. In information theorymin-entropy
is a measure of how predictable an outcome is, and high min-entropy means that the distribu-
tion of the random variable has high variability. In other words, there is no particular value
from the distribution that is more likely to be sampled. As an example, if r is chosen uniformly
from among all the strings that are 256 bits long, then any particular string is chosenwith prob-
ability 1/2256, which is an infinitesimally small value.

Property 2: Hiding: A hash function H is said to be hiding if a value r chosen from a
probability distribution that has high min-entropy, makes it infeasible to find x when given
H(r|x).

This property has application in commitment schemes, where one can commit to a mes-
sage solely by publishing the commitment of it that does not reveal the message itself. First,
one picks a random value and concatenates it with themessage to commit to. This will be used
as an input to a hash function that is hiding and collision-free, and the hash is published as the
commitment. Since the hash is collision-free, it is infeasible to find two different inputs that
give that same hash. By publishing the hash one commits to that input. Because the message
may be one of just a few possibilities, concatenating it with a random value guarantees with the
hiding property the infeasibility of finding the random value that together with the message
would yield the hash value and thereby disclose the message, which was committed to. At any
time one can reveal the commitment by publishing the random value and message. Everyone
can use this as input to calculate the hash that must correspond to the one that was published
prior to the revelation.

The hash function, which is used most extensively in Bitcoin is SHA-256, which gives an
output of 256 bits. It has all the properties described above and is used widely among a lot of
applications, such as in TLS, SSL, PGP and SSH.

2.2 Hash pointers

A collision-free hash function can be used to make a data structure that points to where some
information is stored together with a cryptographic hash of that information. This data struc-
ture is called a hash pointer. Whereas a regular pointer will only show from where some in-
formation can be retrieved, a hash pointer also gives a way to verify that the information has
not been changed. Many data structures that use regular pointers such as linked lists or binary
search trees can also be implemented with hash pointers.

8 2. Mathematical prerequisites

It is of special importance for Bitcoin to take a look at the implementation of a linked list
with hash pointers, referred to as a blockchain. In a regular linked list of blocks, each block
contains some data and a pointer to the previous block in the list, creating a sequence of blocks.
The only thing needed to change such a linked list of blocks into a blockchain, is to replace the
pointers with a hash pointer. Each block does then not just contain information about where
the value of the previous block is, but also a summary of that value through its hash, allowing
for the verification that the value has not changed. As will be explained below, only the hash
pointer at the head of the blockchain must be stored safely to guarantee the integrity of the
whole blockchain.

This data structure allows for a simple implementation of a tamper-evident log. It allows
data to be stored by appending new blocks of data to it. If somebody would alter the data in
the log, it would be detected from the hash pointer at the head of the log in the following way.

If an adversary changes data of some block k, then by the property of collision-resistance,
sohas its hash, nowdenoted ask′. Thus thehashpointer of blockk+1, which contains thehash
of the entire previous block k, would not match up with the hash of the now altered block k′.
The inconsistency between the altered block k′ and block k + 1would therefore be detected.

As long as the hash pointer at the head of the list is in a place where the adversary cannot
change it, the adversary cannot cover up his change by just changing all the following hashes
of blocks.

2.3 Public-key cryptography

Elliptic curve cryptography is used to create public/private key pairs in Bitcoin. An elliptic
curve is a set of points described in general by the equation y2 = x3 + ax + b, where 4a3 +
27b2 ̸= 0 to exclude singular curves. Furthermore, all elliptic curves are symmetric around
the x-axis, as can be seen from the equation. Bitcoin uses the specific elliptic curve specified by
the National Institute of Standards and Technologies (NIST) called secp256k1 and is defined
by the curve y2 = x3 + 7.

To perform binary operations of addition (+) and multiplication (·) within the elliptic
curve, a group over the points on the elliptic curve is defined. In order for G to be a group,
addition must be defined in such a way, that the following four properties hold:

• Closure: if a and b are members ofG, then a+ b is also a member ofG,

2.3. Public-key cryptography 9

• Associativity: (a+ b) + c = a+ (b+ c),

• There exist an identity element 0 such that a+ 0 = 0 + a = a

• Every element has an inverse, that is for every a there exists a, b such that a+ b = 0

Adding a fifth property:

• Commutativity: a+ b = b+ a

defines an abelian group.
As an example the set of integersZwith the commonly known addition andmultiplication

operators define an abelian group, while the set of natural numbers N is not a group, since
there exists no inverse to the elements of N. In a group, the identity element is unique, and
furthermore for each element in the group, the element is guaranteed to have a unique inverse
element [16]. Over the elliptic curve a group will be defined as follow:

• Elements of the group are the points on the elliptic curve,

• The identity is a point defined as the point at infinity 0,

• The inverse of a point P is the one symmetric about the x-axis,

• Addition is defined in the followingway. Given three aligned, non-zero pointsP ,Q and
R, their sum is P + Q + R = 0. Alignment means that a straight line can be drawn
through all the aligned points.

Since addition only requires the points to be aligned, without considering any ordering of
the elements, the definition of addition gives rise to both associativity and commutativity and
hence defines an abelian group.

From the rule of addition and the fact that it defines an abelian group, P + Q + R = 0

can be rewritten asP +Q = −R. This implies that for two aligned pointsP andQ for which
the straight line through these points also passes another pointR on the curve, the sum of P
andQ is defined as the inverse element ofR, namely the reflection ofR on the x-axis.

The definition of addition works except for special cases involving the point at infinity and
intersection multiplicity.
If P = 0 orQ = 0, then no straight line can be drawn through the point 0, since it is not part
of the xy-plane. But since it is defined as the identity element, P + 0 = P andQ+ 0 = Q.

10 2. Mathematical prerequisites

If P = −Q, then P +Q = P + (−P) = 0, from the definition of inverse.
IfP = Q, then there are infinitely many straight lines passing through the point. Considering
a pointQ′ ̸= P , and lettingQ′ approachP , then asQ′ tends towardP the line passing through
those twopoints becomes the tangent of the curve at the pointP . HenceP+P = −R, where
R is the intersection between the curve and the line tangent to the curve at P .
Finally, if P ̸= Q but the line only intersects the curve in those two points, then the line must
in fact be tangent to the curve at either P or Q. If P is the tangent point, then from above
P +P = −Q. Rearranging therefore givesP +Q = −P . If insteadQwas the tangent point,
then P +Q = −Q.

Scalarmultiplication cannaturally bedefinedasn∗P = P+P+P++P (n times). Using
these definitions, addition can be performed on any point on the curve. The rules describing
addition geometrically on elliptic curves can be transformed into a set of equations. Those
details and equations will not be given since it is not relevant for the understanding of Bitcoin
and hence out of scope for this thesis.

By using the algebraic equations for addition, givenn andP , thenQ = n∗P can be easily
computed, which for historical reasons is referred to as the exponential problem in public/pri-
vate key cryptography. If instead P and Q were given, then finding n is called the logarithm
problem. The exponential and logarithmic problem refers to the RSA encryption scheme,
where instead of multiplication the encryption uses exponential operators.

If the domain of the elliptic curve is reduced to span over a finite field of prime order, then
scalar multiplication remains “easy”, while no efficient general method for computing discrete
logarithms on conventional computers is known. Public-key cryptography base their security
on the assumption that the discrete logarithm problem over carefully chosen groups has no
efficient solution. This duality is the key to elliptic curve cryptography.

Defining an elliptic curve produced over a finite field is as follows:

y2 = x3 + ax+ b, 4a3 + 27b2 ̸= 0, over (Fp)
2

Specifically for the secpt256k1 used in Bitcoin:

y2 mod p = (x3 + 7) mod p

where p = 2256 − 232 − 29 − 28 − 27 − 26 − 24 − 1, so a very large prime number.

2.4. Digital signatures 11

The elliptic curve cryptography then works as follows. By starting with a random number
k which acts as the private key, it is multiplied by a predetermined point on the curveG, called
the generator point. The generator point is part of the specification in secp256k1 and the same
for all keys in Bitcoin. This produces another point on the curve which will correspond to the
public key K , so K = k ∗ G. Since reversing this equation is a “hard” problem, it is safe to
share the public keyK with anyone, as it cannot be used to reveal or calculate the private key
k.

Bitcoin does actually not use elliptic curve cryptography to encrypt data. Instead it uses the
encryption’s signing mechanism ECDSA to create signed transactions that proves the knowl-
edge of the private key k corresponding to the public keyK used to derive the Bitcoin address.

2.4 Digital signatures

Without giving a lot of details, the signing mechanism uses a hash-value h of a message m
to be signed. The hash h must be truncated so that the bit length of h is the same as the bit
length of the order of the subgroup n. The subgroup contains all the points on the elliptic
curve generated byG, meaning all the numbers that can be generated as multiples ofG. This
is part of the specification by choosing an elliptic curve and base point. It generates a secret
number p in {1, 2, . . . , n− 1}, which is a number similar to a private key. This secret is used
to calculate the point P = p ∗ G, which uses the similar calculation as for public keys. Then
the number r = xP mod n is calculated, where xP is the x-coordinate of the point P .

Another numbers is generatedbyusing the signer’s private keyk, the number r fromabove
and the hash-value h in its calculation, such that s = p−1(h + r ∗ k). The pair (r, s) is then
the signature of the messagem.

To verify a signature, the recipient will need the signer’s public keyK , the truncated hash-
valueh obtained by hashing the receivedmessagem and truncating as above, and the signature
(r, s). The verification algorithmwill use the fact that from these values provided, the pointP
can be calculated and r must equal the x-coordinate of that point.

The integers u1 = s−1h mod n andu2 = s−1r mod n are calculated. ThenP = u1G+

u2K and the x-coordinate can be compared to r. If they are not equal, then either r or s is
wrong (or both). This would imply that no correct signature was provided, the public keyK is
wrong, or the hashh obtained from themessage is wrong, meaning themessagewas alternated
after signing it.

12 2. Mathematical prerequisites

The reason that P equals u1G+ u2K will become clear from the definition of the public
key, namely thatK equals kG.

P = u1G+ u2K

u1G+ u2kG

(u1 + u2k)G
Using the definition of u1 and u2, P can be rewritten to
P = (s−1h+ s−1rk)G

P = s−1(h+ rk)G,
where modn could be omitted since the subgroup generated byG is of order n.
The last step follows from the definition s = p−1(h + rk). Multiplying by p on both

sides and dividing by s gives p = s−1(h+ rk), which substituted into the last equation yields
P = s−1(h+ rk)G = pG. This also shows why first of all it is important to keep the secret p
really secret and to use different secret values for p for each signature! If two signatures for two
hashes where using the same p value, then the secret p could be extracted from the equations
above.

The details on how this could be exploited will be skipped. This signing method is used
extensively in Bitcoin. After signing a transaction, it cannot be altered anymore, meaning that
amount or destinations cannot be changed, at the same time proving that the person spending
the bitcoins knows the private key of that Bitcoin address containing the funds.

Part I
The system of Bitcoin

I’ve been working on a new electronic cash system that’s fully
peer-to-peer, with no trusted third party.

Satoshi Nakamoto

3
A brief history of cryptocurrencies

Money is one of the oldest technologies humans have developed, and Bitcoin is an
innovation in the technology of money. In order to have a discussion about what Bitcoin is,
and why it works, one first need to have a conversation about what money is, and why it works.

While exchanging value from a person A to a person B in a trust-less manner can be done
by meeting physically and then handing over the good of value, e.g. in form of currency or
precious metals such as gold, payment systems, such as for example the banking system, must
be used with complete trust in the system. The bank, government or corporation of a payment
system is in control of the funds and value in transactions, and therefore must be trusted to
handle a transaction correctly for the client, most often protected by the law. But this does
involve risk, for example the bankruptcy of a bank, government or corporation involved, or
the installation of capital controls which would limit or prohibit withdrawing funds by law.

Historically, a good currency typically consists of the following properties:

• scarcity,

16 3. A brief history of cryptocurrencies

• divisibility and

• fungibility.

Divisibility and fungibilitymeans that it is easy todivide the currency into smaller or greater
units and that any unit of the same currency is indistinguishable from another.

Scarcity means that the currency is limited in supply, immediately implying that it can also
not be easily counterfeited. Government issued currencies such as the Euro and US Dollar
contain watermarks and other physical security protections to guarantee that only the central
bank is able to print and issue the currency. But because governments can print new money
depending on laws that may change over time, all government issued fiat money, such as the
Euro and the US Dollar, derive their scarcity property solely from government regulation and
law.

As enough people trust those governments to only issue newmoney with good policies in
place protecting themoney supply, it is accepted as a currency evenwithout an implicit scarcity
property. Historically though,most fiat currencies have experiencedhyperinflationmaking the
fiat money worthless in a very short time [5].

Early digital money was either issued directly through a bank, such as in DigiCash [7],
which obtained its value through a direct peg to the US Dollar, or issued through a company
such as e-Gold, that would store gold in its vault and issue digital cash up to the value of that
gold.

Therefore the value of money does not come from the precious metals, and it does not
come from the government issuing currencies. It comes directly from the economic activity
it creates through exchange. It comes from the social bonds it creates. The value is derived
through the believe of the value it has. Money is a great societal illusion.

A radically different idea is to allow a digital money to be its own currency, issued and
valued independently of any other currency or commodity. For this to work, you would likely
need to create a digital currency that is scarce by design. One way is a system that requires
solving computational problems, or “puzzles”, to mint new money. This is what happens in
Bitcoin.

Bitcoin is the first so called decentralized cryptocurrency and was invented in 2008 with the
publication of a paper titled “Bitcoin: APeer-to-Peer ElectronicCash System” [18], written un-
der the alias of Satoshi Nakamoto. A cryptocurrency combines techniques from cryptography
and distributed systems to create a payment system, which is decentralized and peer-to-peer.

17

This basic idea of creating digital objects that have some value through computational puzzles
was already proposed in 1992 by Dwork and Noar [10], but as a possible solution to email
spam. For the recipient to accept your email, it would require you to find a solution to a com-
putational puzzle that would take a few seconds to solve. A similar idea was also discovered by
Adam Back in 1997, in a proposal called Hashcash [4]. These computational puzzles need to
have some specific properties:

• be specific to the email,

• the receiver must easily verify the solution,

• each puzzle must be independent of the others, and

• the difficulty of the puzzles must be adjustable.

These properties canbe achievedbyusing cryptographic hash functions discussed inChap-
ter 2. Bitcoin uses principally the same puzzle as Hashcash.

Why did these proposals to combat email spam never take off? Maybe the development
of spam filters was a good enough solution, and the remaining spam not a big enough problem
for spending computing cycles on combating them. In the end, mybe these proposals would
also not have worked. Most spammers today use so called botnets, which are large groups of
other people’s computers, to send spam.

In 1991Haber and Stornetta published a paper describing amethod for secure timestamp-
ing of digital documents [15]. The idea behind timestamping is to give an indication on when
a document first came into existence. But more importantly, it accurately dictates the order of
relative creation. If one document came into existence before the other, then the timestamp
will reflect that. In Haber’s and Storenetta’s scheme, there is a timestamp service. It signs re-
ceived documents together with the current time and a pointer to the previous document, and
issues a certificate containing this information.

Instead of linking to a location, the pointer links to a piece of data. If the data changes, then
the pointer becomes implicitly invalid, guaranteeing the integrity of the timestamping. Each
certificate thereby essentially encumbers the entire history of documents up to that point.

A later proposal gave an efficiency improvement. It is possible to bundle documents to-
gether into blocks and link blocks together as a chain. Within each block, documents would
be linked together in a tree structure, rather than linearly. This data structure became a key

18 3. A brief history of cryptocurrencies

component of Bitcoin, acting as its backbone. By using a Hashcash puzzle to delay how fast
new blocks can be added to the chain, a collection of untrusted nodes can keep track of blocks
in Bitcoin, rather than having to rely on trusted servers to do it.

Bitcoin uses the idea of regulating the creation of new currency units by computational
puzzles, combinedwith securely timestamping a ledger of transactions inside blocks to prevent
double spendings.

There were early proposals of digital money combining these two ideas though. One is
called b-moneybyWeiDai in 1998 [9]. In b-money, anyone can createmoneyusing a hashcash
similar system. There is a peer-to-peer network just as in Bitcoin. Each nodemaintains a ledger,
but it is not globally defined. Instead, each node has its own version ofwhat it thinks everyone’s
balance is. B-money does also rely on timestamping services to sign off on the creation and
transfer of money. A similar proposal was called Bitgold by Nick Szabo [21] in 2005. Neither
idea ever took off. They ignored issues that may ormay not have been solvable. The first is how
to resolve disagreements about the ledger. Another is how hard the computational puzzles
should be to mint a unit of currency, since hardware is becoming drastically faster with time.

The creator of Bitcoin, Satoshi Nakamoto, withdrew from the public in April of 2011, leav-
ing the responsibility of developing the code base and network to a thriving group of volun-
teers. The identity of the person or people behind Bitcoin is to date unknown. However, nei-
ther SatoshiNakamoto nor anyone else has individual control over the Bitcoin protocol, which
operates solely based on fully transparent mathematical principles, open source code and the
consensus established amongparticipants. Thename “Bitcoin”describes both thepayment sys-
tem, spelled with a capital B, as well as the unit of account within this payment system, spelled
with a small b as bitcoin.

Bitcoin is the beginning of something great: a currencywithout
a government, something necessary and imperative.

Nassim Taleb

4
Transaction system

Withalltheprerequisites inplace, lets start by looking at how transactions canbebroad
casted in a messaging system.

We begin by building a simplified version of a cryptocurrency, implementing a data struc-
ture for transactions. We will develop it further in different steps throughout this and the next
chapter and improve its security properties. Finally, evolving the cryptocurrency into a model
of a permission-less and decentralized cryptocurrency, similar to how Bitcoin works. Differ-
ences between our simplified cryptocurrency and Bitcoin will always be mentioned when ap-
plicable.

4.1 A simple cryptocurrency: Version 1

The first version of the cryptocurrency will be denoted as AliceCoin. It consists of just two
rules. The first rule says that a designated entity called Alice can create new coins at will, which
automatically belong to herself. When Alice decides to create new coins, she just has to gen-

20 4. Transaction system

erate a unique serial number for the new coin, denoted [SerialNumber]. With her secret
signing key, she then has to digitally sign the string GenCoin [SerialNumber]. This string,
together with her signature, amounts to a new coin, which is uniquely identified through its
serial number. Anyone can verify the validity of the coin by checking Alice’s signature against
the statement generating that coin.

The second rule describes how anybody owning a coin can transfer it to somebody else by
provably changing the ownership of said coin to the new one. This is done by using crypto-
graphic operations in such a way that transactions spending coinsmust be signed by the owner
of those coins. Alice can pay her newly created coin by signing a transfer statement Send [H(
)] to Bob, where[H()] contains a hash-pointer to theGenCoin statement of her coin. The
hash-pointer solely consists of taking the hash value of that whole GenCoin statement. Bob
will see that the transaction sending him the coin was signed by Alice. From rule one Bob can
see that indeed Alice was the owner of the coin prior to him, since the transaction references
her own signed GenCoin statement.

Anybody who owns a coin and wants to spend it, must sign a similar transfer statement.
However, instead of referencing a GenCoin statement, they will just reference a transfer state-
ment in which they received the coin. For example, assume Bob wants to transfer to Chuck
the coin he received from Alice. He creates the transfer statement Send [H()] to Chuck,
where this time [H()] is the hash pointer to the transfer statement Bob received from Alice,
or any other valid transfer statement he received. Finally, Bob signs this statement. NowChuck
can prove to anybody that he owns the coin. They can follow the chain of hash pointers back
to the coin’s creation and in each step verify that the rightful owner signed the transfer.

But Bob discovered a fundamental flaw in AliceCoin. Nothing can stop him from double-
spending his coins. If Bob, without telling anybody else, passes his coin on to Chuck with
a signed transfer-statement, he could create another signed transfer-statement that sends the
same coin also to Charlie. To Charlie, that transaction would appear perfectly valid, making
him theownerof this coin. ThusBobwouldhave successfully paid the samecoin tobothChuck
and Charlie.

Tocircumvent this problemofdouble-spending coins, cryptocurrenciesmust relyon ledgers.
Before presenting an improved version of AliceCoin using a ledger, a more in-depth descrip-
tion of the data structure of Bitcoin transactions will be presented. The data structure is very
similar to the mechanism used in AliceCoin for transferring coins.

4.2. Data structure for Bitcoin transactions 21

Figure 4.1.1: A simple chain of transactions in AliceCoin. The bottom is the GenCoin
transaction, which issues the coin. The middle transaction sends the coin to Bob by point-
ing to the GenCode transaction with a hash pointer and changing the ownership from
Alice to Bob by providing Alice’s signature. The last transaction sends the coin to Chuck,
who can verify that every transaction in the chain rightfully changed the ownership of the
coin by checking the signatures provided in each transaction by the owner in that time.

4.2 Data structure for Bitcoin transactions

Transactions in Bitcoin are messages defined as a data structure. They are chained together,
such that a new transaction will spend bitcoins from unspent transactions that the spender has
received. Every transaction has an ID, which simply corresponds to its hash value. A transac-
tion consists of a source of funds, called inputs, with unlocking scripts for each of those inputs. A
transaction also has outputs that define the destinations and their amounts of funds to receive.
Each output also contains a lock script. The lock scripts contain instructions that determine
how the transferred bitcoins of an output can be spend again. To uniquely identify inputs and
outputs, they are listed within the transaction with unique index numbers, starting at zero for
each input and output.

Typically, bitcoins are transferred to Bitcoin addresses. A Bitcoin address is a unique num-
ber similar to a bank account number, or like an email address. In the output of a transaction
that sends funds to aBitcoin address, the lock scriptmust contain instructions requiring a proof
of ownership of said Bitcoin address. In other words, the lock script implicitly incorporates the
recipient’s Bitcoin address by requiring a proof of ownership of exactly that address whenever
the recipient wants to spend those bitcoins with a new transaction.
Generally speaking, a lock script defines requirements on who or how bitcoins can be spend

22 4. Transaction system

Figure 4.2.1: One example of the use of inputs and outputs in a common Bitcoin trans-
action. Alice creates a transaction paying some bitcoins to Bob. In this case the amount
of bitcoins Alice uses in Input 0 is greater than what Alice wants to pay to Bob in Out-
put 0. Therefore she includes another output Output 1 which pays back the left-overs to
herself again.

again, and the unlocking script of the transaction input that spends those bitcoins must satisfy
these requirements. Both the lock and unlocking scripts are programmed using a program-
ming language called Script, see Chapter 6. Although unlocking scripts can potentially also
be written as script programs, they usually only contain the information needed to satisfy the
conditions determined by a lock script.

The inputs of a new transaction determine which funds to spend and must contain the
transaction IDs and output indices to unspent transaction outputs. The whole amount of bit-
coins used by inputs will be spend. The sum of all those funds used by the inputs must at least
equal the total amount the spender wants to transfer. Therefore, any “left-overs” from using
too many bitcoins with the inputs must in that same transaction be sent back to the sender’s
own address. This is done by including an output that contains a lock script that locks those
left-overs to the sender’s own Bitcoin address. This is similar to how a pocket wallet works. If a
client has to pay 1.20 Euros for a coffee, but only has a one Euro and a 50 cent coin in his wallet,
then he will use both coins for a total of 1.50 Euros, paying 1.20 Euros and expecting to receive
30 cents as change for the left-over.

Bitcoin transactions can use any number of inputs and outputs. Figure 4.2.2 shows transac-

4.2. Data structure for Bitcoin transactions 23

Table 4.2.1: The data structure of a Bitcoin transaction

Size Field Description

4 bytes Version Specifies which rules this transaction follows
1-9 bytes Input countera Specifies how many inputs are present
Variableb Inputs One or more transaction inputs
1-9 bytes Output countera Specifies how many outputs are present
Variableb Outputs One or more transaction outputs
4 bytes Locktime References a Unix timestamp or block number

aThe value is an integer.
bThe size depends on the number of inputs or outputs.

tion types that aggregate inputs together with only one potentially bigger output, or split one
input in many smaller outputs.

To include a transaction fee, whose purpose is explained later, a transaction just has to use
a greater amount of bitcoins from the inputs than it specifies in the outputs. The total net dif-
ference will then make up the fee for that transaction. Figure 4.2.3 shows a chain of Bitcoin
transactions, ignoring the lock and unlocking scripts.

The data structure of Bitcoin transactions can be seen from Table 4.2.1. The locktime can
define the earliest time that a transaction becomes valid. But when set to zero, no locktime is
present and the transaction is valid immediately.

Transaction inputs are pointers to unspent transaction outputs. They point to them by
referencing the transaction hash and index from that output. To spend an unspent output, the
input also includes an unlocking script that satisfies the spending conditions set by the unspent
output. The structure of a transaction input is shown in Table 4.2.2.

The sequence number is typically just set to the value 0xFFFFFFFF. It was initially thought
to be used for replacing transactions that were still unconfirmed. Instead, there is now a pro-
posal thatwill change its purpose,making itmuchmoremeaningful. Thesequencenumberwill
be repurposed to prevent validation of a transaction until a certain age of the spent output, also
referred to as the “maturity” of the transaction. This means that a transaction remains invalid
until for each of its input, the time defined with each sequence number has passed for its corre-
sponding output that it spends. So, if e.g. the sequence number for some input is set to 7 days,
then the transaction can first become valid after the transaction that it spends is at least 7 days
old. All the details regarding how the notion of time can be interpreted in this decentralized

24 4. Transaction system

Figure 4.2.2: Aggregating and distributing transactions. The first transaction type bun-
dles together many inputs with only one potentially greater output. The other transaction
type splits up a single input into many smaller outputs.

4.2. Data structure for Bitcoin transactions 25

Figure 4.2.3: A chain of Bitcoin transactions. Output 0 from the first transaction is
spent by specifying its transaction ID and index in the input for the second transaction
of the chain. Each transaction includes a fee, which is the difference of the total amount
of bitcoins from the inputs and outputs.

26 4. Transaction system

Table 4.2.2: The data structure of an input to a Bitcoin transaction

Size Field Description

32 bytes Transaction hash Hash of the transaction containing the un-
spent output to be spent.

4 bytes Output index The index number of the unspent output to
be spent

1-9 bytes Unlocking script size Size of the unlocking script in bytes
Variable Unlocking script A script that satisfies the conditions set by the

lock Script of the unspent output
5 bytes Sequence number Typically set to 0xFFFFFFFF

Table 4.2.3: The data structure of an output to a Bitcoin transaction

Size Field Description

8 bytes Amount Bitcoin value in Satoshisa.
1-9 bytes Lock script size Size of the lock script in bytes
Variable Lock script A script defining the conditions needed to

spend output

aThebitcoin unit was chosen to represent a value of 108. A Satoshi is the small-
est possible denomination and therefore 0.00000001 bitcoin.

systemwill be explained in later chapters. The sequence number is also referred to as a relative
locktime, since it depends on the relative time that has passed since its parent was confirmed.
It is therefore in contrast to the locktime, which is an absolute locktime for some specific date
to be reached. Wewill return to the sequence number and locktime inChapter 6, in which this
new interpretation of the sequence number will be assumed to be part of the consensus rules
of the Bitcoin network.

A new transaction will create unspent transaction outputs that each can be referenced as
an input to new transactions spending those bitcoins again. As already mentioned, the out-
put consists of two parts: the amount to send, and a lock script. Sending someone bitcoins
therefore consists of creating an unspent transaction output registered to their bitcoin address,
available for them to spend.

The structure of a transaction output is shown in Table 4.2.3.

Everynode in theBitcoinnetwork that receives a new transactionwill validate it by running

4.3. Bitcoin Addresses: The Account numbers of Bitcoin 27

both the lock and unlocking script simultaneously and check that the unlocking script satisfies
the condition from the lock script.

As of today, most transactions have the form “Alice pays Bob”. But transactions are not
limited to the form of “Alice pays Bob” and can be programmed to contain a lot of different
conditions, many of which will be explored later. In the following we will investigate how ac-
count numbers can be generated and how exactly the proof of ownership of a Bitcoin address
is provided.

4.3 Bitcoin Addresses: TheAccount numbers of Bitcoin

Figuratively, Bitcoins are digitally attached to an account by the lock scripts of transactions as
described above. The balance of a Bitcoin account is determined by checking all ingoing and
outgoing transactions with lock scripts to that account. Bitcoins are therefore just a unit of
account, and the owner of an account is in control of creating transactions, which can transfer
bitcoins from his account to another. The accounts in Bitcoin are refered to as public Bitcoin
addresses, and in a transferred sense they are similar to a bank account number or email address.
But Bitcoin addresses can be created offline without a connection to the internet and do not
need to be registered. A public Bitcoin address is the hash-value of a public key, for which there
exists a corresponding private key. Bitcoin uses elliptic curve cryptography to create such a
private key. The hash-value consists of first using the SHA256 hash-function on the public key
and afterwards using the hash-function RIPEMD160 on that hash to create a 160-bit double-
hashed value.

To derive a public Bitcoin address from this hash, a version prefix of 1 byte is added to
differentiate e.g. between the public Bitcoin address with prefix zero (0x00) or a similarly
double-hash encoded private key with prefix 128 (0x80), referred to as the private Bitcoin key.
But many more prefixes exist. Next, a checksum is calculated from the version prefix concate-
nated with the double-hash value of the public key by using the SHA256 hash function twice
on it. From this hash value only the first 4 bytes serve as the checksum and are appended to
the double-hash value of the public key with version prefix. This corresponds to a complete
Bitcoin address. However, for readability purposes a Bitcoin address is generally presented in
Base58Check encoding. Base58Check encoding uses all alphanumeric characters, but without
the characters I (eye), l (one), O (oh) and 0 (zero), to reduce the possibility of misspelling by
characters having a similar appearance.

28 4. Transaction system

Figure 4.3.1: Public Key to Hash conversion. The public key is first hashed using
SHA256 and afterwards RIPEMD160, returning a double-hash value of length 160 bits.

Figure 4.3.2: Schematic Base58Check encoding procedure. A version prefix and check-
sum is added to the public key hash and represented in Base58 encoding.

4.4. Proof of ownership of a Bitcoin address 29

Becauseof the versionprefix, every standardBitcoin address that is represented inBase58Check
will start with the character 1, while e.g. a private Bitcoin key in Base58Check encoding will
start with the character 3. Due to the checksum appended at the end of the Bitcoin address, a
Bitcoin client program can make sure that there are no misspellings in the address of a transac-
tion before propagating it to the network.

4.4 Proof of ownership of a Bitcoin address

Using a digital signature algorithm from elliptic curve cryptography, an unlocking script can
provide the proof of ownership of a Bitcoin address that is required by a lock script. First of all,
in a standard Bitcoin transaction, the lock script will require that its unlocking script provides
the public key to the Bitcoin address that received the funds. Furthermore, itmust provide that
key’s signature produced for the spending transaction. This makes a Bitcoin transaction com-
parable to a check, since anyone can create the template for a transaction, but only the owner
of the funds being spend can make the transaction valid by signing it.
When a transaction is signed, it cannot be changed without invalidating it. Changing any-
thing will make the hash of the transaction different from the hash used for the signature. But
there exist different types of signatures, which allow specific parts of a signed transaction to
be changed without invalidating the signature. Also, since the lock and unlocking scripts are
programmable, much more complex transactions in form of contracts are possible, which will
be described in Chapter 6.

Bitcoin is a remarkable cryptographic achievement and the
ability to create something that is not duplicable in the digital
world has enormous value.

Eric Schmidt

5
Decentralization using a distributed ledger

This chapter introduces many of the mechanisms of how and why Bitcoin works in a de-
centralized and peer-to-peer way. The parts that will be of focus in this chapter is to solve the
double spending problem discussed in Chapter 4. In regard to the aim of this thesis however,
the description of these mechanisms are not necessarily required to know about, as it does not
directly involve the transaction structure or programming of the outputs, which will be pre-
sented in Chapter 6.

5.1 Use of a public ledger with the simple cryptocurrency: Version 2

After having discussed the details on how transactions work in Bitcoin and having understood
its data structure, we can return to take a look at how Bob can improve Alicecon. To solve the
double-spending problem, Bob will propose a new cryptocurrency that we will call Bobcoin.
It is built off of Alicecoin, but will involve more complication in terms of its data structure.
First of all, Bob will be a designated entity that publishes a history of all transactions that have

32 5. Decentralization using a distributed ledger

Figure 5.1.1: The blockchain of Bobcoin. Bob adds transactions to a new block, which
have a hash pointer to their last block in the list. By always securely storing the hash of
the latest block (the head of the list), it makes the blockchain tamper-evident. Each block
is furthermore signed by Bob, acting as the sole authority deciding which transactions are
included.

happened. For this hewill use a blockchain, which hewill digitally sign using his public-private
key pair. The blockchain will contain a series of data blocks, each of which can contain one or
more transactions. When a transaction is included in a block, that block will contain the ID of
the transaction and its data. Furthermore, every block contains a hash pointer to the previous
block. Bob will digitally sign that final hash pointer, which represents this entire structure, and
will publish the signature along with the blockchain. In Bobcoin, a transaction only counts as
confirmed if it is in the blockchain. Anybody can verify that a transaction was accepted by Bob
by checking his signature on the block that the transaction appears in. Bob makes sure that
he does not accept a transaction that attempts to double-spend an already spent coin, which
couldbe spottedeasily by anybody looking inside theblockchain. Furthermore, theblockchain
structure prevents Bob from being able to change his mind about the history of transactions.
If he wants to add to, change or remove a transaction in the history, he would have to change
the block within the blockchain that contains the transaction. But this would affect all of the
following blocks due to the hash pointers. As long as someone is monitoring the latest hash
pointer that Bob publishes, the change would be obvious and easy to spot. So a blockchain
makes it easy for any two parties to verify that they have observed the exact same history of a
transaction. It is important to note that, until Bob has added a transaction into a newpublished
block, participants are not safe in accepting the transaction, since it could otherwise still be
double spend. A transaction that is otherwise valid, but not in the blockchain, may never be
added to the blockchain if Bob instead adds a transaction that spends the same coins.

So far Bobcoin works, in the sense that participants can see which coins are valid. It pre-
vents double-spending, because everyone can look into the blockchain and see all of the valid

5.2. General consensus protocols 33

transactions and spot potential changesmade to blocks Bob already signed and published. But
the problem is Bob himself. Even though he is unable to create fake transactions, since he
cannot forge other people’s signatures, he just still has too much influence otherwise. He can
prevent transactions originating from targeted users to ever be added to a block, thus denying
them service andmaking their coins useless. He can also create asmany new coins as he wants,
or suddenly bring the system to a halt if he gets bored ofmaintaining it. The problem is central-
ization. As described in the introduction, many early cryptocurrencies that relied on a central
authority largely failed to take off. Although this happened for many reasons, in hindsight it
appears that it is difficult for cryptocurrencies to achieve acceptance when they rely on a cen-
tralized authority. Arguably, one of themain reasons to Bitcoins success, is that it does not rely
on any centralized authority to keep track of the balances in each account or to authorize valid
transactions.

But to achieve this level of decentralization, we need to figure out away for all users to agree
upon a single published blockchain acting as the history to all transactions that have occured
in the system. Decentralization is an important concept, which is not unique to Bitcoin. But
trade offs are possible, and almost no system is purely decentral or purely central. Although
email is fundamentally a decentralized technology, where anybody can operate an email server
of their own, in reality a large portion of its users rely on a small number of centralizedwebmail
providers that dominate the space. Similarly, while Bitcoin as a technology is decentralized
and even encourages it, services like Bitcoin exchanges that let users convert bitcoin into other
currencies may be centralized.

Returning to our hypothetical cryptocurrency, what if Chuck sees the problem of the cen-
tralizationofBobcoin andwants to decentralize it? Thenhewouldhave to look intodistributed
consensus protocols, which establish agreement among a number of nodes or processes for a
single value.

5.2 General consensus protocols

In consensus protocols, nodes are participants in the network thatmust agree upon some value
to establish consensus. Those networks are not centrally dictated (otherwise establishing con-
sensus would be trivial), and there is the notion of honest, faulty and malicious nodes. Honest
nodes follow rules, which the protocol dictates. Faulty nodes could be ones that give no an-
swers because they have halted. Malicious nodes can even operate with their own rules dis-

34 5. Decentralization using a distributed ledger

favouring the consensus protocol.
Given n nodes that each have an input value, and some of the nodes may be faulty or mali-

cious, the distributed consensus protocol has the following properties:

• It must terminate with all honest nodes agreeing on the same value.

• The value must have been proposed by an honest node.

In a cryptocurrency, the distributed consensus protocolmust bring thenodes to agreement
on exactly which transactions that were broadcasted become part of a single, global ledger con-
taining no double spends. For that purpose, transactions can be bundled inside blocks locally
by each node and eventually become their proposal value to the distributed consensus proto-
col. In that way, consensus is established in a block-by-block basis and at any given time all
nodes in the peer-to-peer network have a ledger consisting of a sequence of blocks, each con-
taining a list of transactions that they build consensus around. But in a peer-to-peer network
there is no notion of a global time, which heavily constrains the set of known algorithms that
can be used in the consensus protocol. The lack of global time leads to an impossibility result
originating from the Byzantine Generals Problem.

Theoretical results

In the famous ByzantineGenerals Problem, a group of generals of the Byzantine army are phys-
ically separate from each other but must agree upon a specific day and time on which jointly
to attack a city. Only a united attack will be successful. The problem arises since there may
exist persons acting as Byzantine generals, while in fact belonging to the enemy. Those faulty
generals can send a message to one part of the generals with a time and day to attack, while
sending a different time or day to the other part of generals. Analogous to the case of digital
currencies, such a faulty general corresponds to someone who sends coins to some person and
then that same coin, which is already spent, to another person. From this problem follows im-
possibility results showing that, under specific conditions, and with only a third ormore of the
nodes being malicious, achieving consensus is impossible [12].

Other theorems such as the Fischer-Lynch-Paterson impossibility result even show that,
under conditions such as asynchronous message propagation, consensus is impossible with
just a single faulty process [13]. Asynchronous message propagation means that messages do
not have to arrive within a certain known time limit, and so never time-out. At first sight, this

5.3. Making the simple crypocurrency decentralized: Version 3 35

seems to be the case for Bitcoin transactions, which can propagate and be validated at any time.
To make things even more complicated, the lack of identities in a peer-to-peer network opens
up for Sybil attacks, in which a malicious adversary create copies of processes that from the
outside look like many different nodes, when they are in fact all under the control of the ma-
licious actor. The lack of identities makes it in general impossible to select leaders among the
nodes. Many consensus protocols depend on selecting a node as leader in the network to guide
in establishing consensus around some value.

But it turns out that the impossibility results were proven in very specific models, typi-
cally intended to studydistributeddatabases. Bitcoin violatesmanyof the assumptions implied
in those models. Ironically, with the current state of research, consensus in Bitcoin probably
works better in practice than in theory. Consensus can be observed as working, but the theory
to fully explain why it works is not completely developed and explored yet, leading to interest-
ing new research showing that e.g. the threshold for a 51% faulty nodes attack considered in
Bitcoin to define the line after which things could become bad, eventually must be adjusted
down [11]. Although not the focus of this thesis, developing theories around this part of Bit-
coin is also an important field, as it can help to predict unforeseen attacks and problems.

ThewayBitcoin violates assumptions of traditionalmodels for consensus is by introducing
incentives, which work specifically in the case of Bitcoin since it models a currency. Second,
it makes use of randomness to remove the notion of a specific starting point and ending point
for consensus used in many protocols. Bitcoin achieves consensus over a long period of time,
about an hour in practice. And even at the end of that time, there is no strict guarantee that
any particular block has made it permanently into the ledger and thereby established full con-
sensus. But the probability that any block that is part of the ledger will be removed declines
exponentially with time and becomes negligible after a relatively short time period. With those
prospects of Bitcoin in mind, let’s return to Chuck, who wants to extend Bobcoin to make it
a decentralized cryptocurrecy. To understand how cryptocurrencies use Game Theory by in-
centivizing fair play, we will neglect all the technical details for a moment.

5.3 Making the simple crypocurrency decentralized: Version 3

Chuck is unhappy with the central role that Bob plays in Bobcoin. He wants to create a new
cryptocurrency calledChuckcoin, butwithout being the sole authority to validate transactions
or build blocks containing them. He wants to delegate this work out to everybody involved in

36 5. Decentralization using a distributed ledger

the system. He invents a way to do so, which may sound bizarre at first, but fundamentally
works in a similar way to Bitcoin.

Chuckcoin will rely on the data structure and propagation of transactions as in Alicecoin,
and on a blockchain ledger as in Bobcoin, but not relay on only a single central entity that
creates blocks. Every day Chuck will hold a public lottery, in which anyone can participate for
free, and the winner of which receives 25 Chuckcoins as the price. Chuck will make pieces
of paper that each contain a number from 1 to n, where n is the total number of participants
that day. Those will be put inside a bag from which everyone takes out exactly one piece. The
winner is the one that draws the smallest number, namely number 1.

Thewinner is allowed to createonenewblock that day, containing valid transactions, which
typically were broadcasted during that day. Furthermore, within this block the winner may
create and include one GenCoin transaction creating 25 Chuckcoins, and which are paid to
himself. ThisGenCoin transaction serves as the reward for winning the lottery, and establishes
the incentive to create a valid block, since it will then be accepted by everyone and therefore
the GenCoin transaction would also implicitly be accepted.

As was also the case of Bobcoin, everybody must check the validity of this new block in-
dependently, by making sure it contains a hash pointer to the previous valid block from the
previous day, that all transactions are valid and not double spends, that the GenCoin transac-
tion does not create more coins than the allowed limit of 25 and that the whole block is signed
by the rightful winner of that day’s lottery.

Participants have an incentive to create valid blocks, since for a lot of times they may have
traveled a long way to participate in the lottery; and when they finally win, they want to receive
a reward from the GenCoin transaction that they include in their winning block.

An evil participant who for whatever reason wants to attack Chuckcoin by creating invalid
blocks, could try so by e.g. double spending transactions in his block. But he would simply
just lose his GenCoin reward. The block would easily be spotted as being invalid, and it would
therefore immediately be rejected by all the honest participants. They could re-elect a new ran-
domwinner by holding another lottery that day andhopefully culminating in an honestwinner
creating a valid block. The attacker could try to find ways of obtaining more votes in the lot-
tery, to hopefully win a lot of times in a row and create a lot of invalid blocks to destroy the
system. He could start to bring his friends and cousins to work for him as evil participants. But
if the system gains popularity, this would probably not be enough relatives. It is difficult for the
attacker to obtain enough votes for the attack to become statistically viable during longer peri-

5.4. The Bitcoin Blockchain 37

ods of time. It would require a majority of the votes in the long run. He would therefore have
to start paying people a bribe for attacking the system. But the bribe must be more than what
would be obtained by just being an honest participant, who would then receive the GenCoin
transaction instead.

If Chuckcoin would gain enough momentum, then each GenCoin reward could become
worth so much money that the attack just becomes astronomically expensive to carry out for
longewr periods of time.

Chuckcoin relies on the majority of participants being honest, which may be achievable
from the incentive of playing by the rules. Using the lottery, Chuckcoin has become somewhat
decentralized. Although to begin with Chuck will still be the one to organize the lottery, if one
day he would just disappear, the remaining participants could still hold these lotteries without
him. In the following we will see that indeed this lottery, which in the analog world sounds
impossible to establish, in fact can be implemented digitally in a very elegant and completely
decentralized way using hash functions.

But to assure that all participants of ChuckCoin can verify the proposed winning block,
Chuckcoin still relies on people meeting in a central place to hold the lottery. It is therefore
strictly speaking not peer-to-peer. Bitcoin’s blockchain technology solves all of this, but intro-
duces an obstacle in the immutability of the blockchain ledger by allowing for the negligible
probability that already valid blocks in the chain can be changed for other valid blocks.

5.4 TheBitcoin Blockchain

Bitcoin makes use of a distributed ledger called Blockchain, which we have already discussed
to some extent. Anybody can choose to be part of the peer-to-peer network of Bitcoin and
download the entire Blockchain, a complete ledger containing every valid Bitcoin transaction
made and agreed upon until today’s date.

The name Blockchain is derived from the way in which new transactions are added to the
ledger. Transactions are bundled together into a block that contains a reference to the previous
block added. New valid transactions are added to the Blockchain every ten minuts by blocks
that are added one after one, and since every block contains a reference to the previous one,
they append unto an ever-growing chain of blocks.

Nodes in the Bitcoin network can choose to participate in a challenge that determines who
is allowed to add anewblock to theBlockchain. BitcoinusesGameTheory to create a challenge

38 5. Decentralization using a distributed ledger

Figure 5.4.1: Simplified Blockchain representation. Every node stores the Blockchain
ledger locally and forwards each new unconfirmed transaction it receives to all other nodes.
In this example, one transaction is propagated that sends 2 BTC from A to B. Eventually,
with the next block this unconfirmed transaction will be added to the Blockchain.

with an incentive of being anhonest node in thenetworkwith a reward inbitcoins. This process
is called “mining”. The challenge involves the hashcash proof-of-work, which is a moderately-
hard hash-puzzle, discussed in Chapter 2.

A block contains zero or more new transactions, a reference to the previous block by using
a hash-pointer, a timestamp, a nonce, which is a random value, and may contain one so called
coinbase transaction, which is similar to a standard Bitcoin transaction but does not need any
input, thereby creating new bitcoins as a reward to the miner. When a node receives a new
block from any other node it will check if the block is valid or not. For a block to be valid, all
transactions contained in it must be valid with respect to all the transactions already stored in
the node’s local Blockchain. Therefore, a transaction in a new block cannot contain double-
spends of funds or otherwise invalid transactions, and this is verifiable individually by every
participating node. Furthermore, the time-stampmust be within 2 hours of the node’s current
time, which allows for small discrepancies in time.

The challenge of “mining” involves the hash-value of the block, which, represented as a
number, must be less than an agreed-upon value by the network, called the difficulty. The chal-
lenge consists of using different nonce values within the block, until one is found that satisfies

5.4. The Bitcoin Blockchain 39

Figure 5.4.2: The Blockchain is an ever appending list of blocks, each connected through
a hash pointer to its previous block. The hash of each block must satisfy a specific pat-
tern, determined through a process called ”mining”.

the difficulty. If a miner finds a new block, it will propagate it to the whole network, and every
nodewill check its validity. If the block is valid, thenminerswill individually add it to their own
local version of the distributedBlockchain. The coinbase transaction of the newblockwill then
implicitly be considered a valid transaction and reward theminerwho found the blockwith bit-
coins.

Theminers will then try to find a new block referencing this last one and include new trans-
actions that have not yet been confirmed. As mentioned, blocks are found in around a ten
minutes interval. This is achieved by adjusting the difficulty, such that it becomes too hard for
the whole network to find a block faster than ten minutes, but easy enough for it to not take
longer in average. After every 2016 blocks, the whole network will adjust the difficulty, using
rules defined in the Bitcoin protocol. The time it took to find the last 2016 blocks is compared
to the 20.160 minutes it should have taken if every block would be found in ten minutes. The
difficulty is then adjusted accordingly, with a factor corresponding to the time it took to find
the last 2016 blocks divided by 20.160 minutes. In this way the Bitcoin protocol ensures that
it will always take about tenminutes to add a new block regardless of the size of the network or
the sophistication of the mining hardware it employs.

Since the Bitcoin software was introduced in 2009, the first block in the Blockchain is hard-
coded into the software to have a united starting point, also referred to as the Genesis Block.
When newnodes are added to the network, they first have to download the current Blockchain

40 5. Decentralization using a distributed ledger

Figure 5.4.3: The data structure of a block.

5.4. The Bitcoin Blockchain 41

by downloading it block-by-block from other nodes and validating it. When the node reaches
the top of the Blockchain, it can become a mining node by starting the mining process. But as
of todaymany different kind ofmining nodes exist, some of which do not need the Blockchain,
but instead trust in a network to deliver correct information to mine on.

Propagated but yet unconfirmed transactions are said to have zero confirmations. The
block that includes a transaction counts as its first confirmation, because thewhole networkhas
accepted and agreed to view it as a valid transaction and can therefore not be double-spent in
this Blockchain anymore. Every blockmined thereafter counts as further confirmation. When
the next block is mined, it will refer to the block containing the transaction as its parent block
and will count as the second confirmation for that transaction. The next block will refer to the
previous block and count as a third confirmation, and so forth. Every new-mined block digs
the transaction further and further into the Blockchain.

The rule for creating a coinbase transaction is specified by the Bitcoin protocol. The max-
imum value allowed in a coinbase transaction was 50 bitcoins to begin with, and the reward
is halved after every after 210.000 mined blocks . Although the difficulty is adjusted such that
it should take approximately four years to mine those 210.000 blocks, in practice the network
has been growing so fast, that the last halving only took three years to occur. The first reward
halving occurred in 2013, and miners could from then on only reward themselves with 25 bit-
coins in each block, expected to halve again in July of 2016. This is the only way bitcoins can
be created, and hence all bitcoin in circulation can be traced back to such a coinbase transac-
tion. Furthermore, each Bitcoin transaction must contain a small fee, depending on the size
of the transaction. The fee is the difference of the amount in bitcoins from the inputs and the
amount of bitcoins sendwith the outputs. The sumof all these fees from transactions included
in a block can be added to the coinbase transaction as additional reward for the miner. Thus
whennomorenewbitcoins are generated, an incentive ofmining blocks contiues to come from
the reward of the transaction fees. A bitcoin is dividable into 100.000.000 subunits, which are
called Satoshis in honour to the creator of Bitcoin. As a result, since 32 subsequent reward
halvings would require smaller subunits than one Satoshi as a reward, nomore bitcoins will be
created after around 130 years. The total amount of bitcoins to be created is therefore capped
at roughly 21 million, or 2.1 ∗ 1015 Satoshis, which gives Bitcoin its property of scarcity.

The Bitcoin protocol dictates to always use the Blockchain with the most cumulative dif-
ficulty as the one to establish consensus around. This means that every node with different
Blockchains to choose between, will choose to mine blocks for the Blockchain where the sum

42 5. Decentralization using a distributed ledger

Figure 5.4.4: Showing a transaction with two and six confirmations. The pool of uncon-
firmed transactions have propagated through the network but are not yet included in any
block in the Blockchain. As a rule-of-thumb, a transaction is considered confirmed, if it
has at least six confirmations (indicated with green).

5.4. The Bitcoin Blockchain 43

of difficulties from all the blocks of that Blockchain is the greatest. This is typically also the
longest Blockchain. It prevents the Bitcoin network from splitting permanently into two or
more separate networks, working on two different Blockchains, also referred to as a Blockchain
fork. It can happen and does so quite often for a short period of time. When two miners in-
dependently find a new block at nearly the same time, one part of the network could receive
one block at first and accept it, while the other part receives the other one first and accepts that
one. Now the network is workingwith two slightly different Blockchains, being equal up to the
block before the last one, but differing on the last block. Their cumulative difficulty is the same,
so theywill choose towork on the Blockchain fromwhich they received the last block first. But
if in either one or the other part of the network split a new block is found, it will be propagated
to the whole network. THerefore, nodes working on the other Blockchain will also receive the
new block and see that the other Blockchain now contains more cumulative difficulty, namely
is one block ahead. They then switch to the other. This network split has thus resolved itself,
and the neglected branch of theBlockchainwill be referred to as orphaned. Thewhole network
is therefore self-healing and now in consensus about exactly one Blockchain again. But for that
reason, a transaction that has just been validated in a block is not quite as likely to stay in the
Blockchain that the network establishes consensus around as one that has already hundreds of
confirmations.

If there is a bad actor with a lot of hashing power to mine blocks faster than the rest of the
network, he could reverse a newly confirmed transaction in the following way. The attacker
could exploit Bitcoin’s protocol rule byfirst propagating a transactionof his own to thenetwork.
When the transaction is confirmed in a block, the attacker will not try tomine a new block that
refers to that last foundblock, which confirmedhis transaction. Instead, hewill try tofindanew
blockwith a reference to thenext-last block, which is theparent block to theone that confirmed
his transaction. This block could then contain a transaction, which would be a double-spent of
his already confirmed transaction, but still be a valid block, since it is in a fork which does not
contain his first transaction that already spent the funds. If the attacker propagates such a block
to the network, then every node will accept it as a valid block and store it as a parallel chain.
But they will not change to this parallel chain, since it is of the same cumulative difficulty, and
its last block was not received first.

The attacker can only succeedwith his attack if he could now find another block that builds
onhis last one, before the rest of thenetworkfinds anewblock to their versionof theBlockchain.
Then thenetworkwouldchange to the attacker’sBlockchain,whichnowcontainsmore cumula-

44 5. Decentralization using a distributed ledger

Figure 5.4.5: The Blockchain has branched and one part is working on branch A and the
other on branch B. This can happen when block n+3 and n+3’ are found at nearly the
same time, and one part of the network receives block n+3 and the other block n+3’ first.

Figure 5.4.6: The network has orphaned branch B by continuing with only the branch of
highest cumulative difficulty.

5.4. The Bitcoin Blockchain 45

Figure 5.4.7: A double spend attempt. The attacker needs to create a block referenc-
ing the one before his transaction he wants to double-spend was confirmed and continue
creating new blocks until he outperforms the current Blockchain.

tive difficulty. This would successfully change the consensus of the network from first agreeing
upon a transaction with one confirmation, but then removing it from the Blockchain and ac-
cept the double-spent of that transaction instead. Nevertheless, an attacker could only double-
spent his own transactions, or choose to exclude transactions in his own blocks. He could not
change balances or destination addresses of transactions, since they are cryptically secured as
described in the previous chapter using public-private key encryption and signatures. Since
the attacker needs a lot of hashing-power, it becomes very expensive and difficult to achieve for
even small time periods. For transactions with many confirmations, an attacker would have to
create a parallel Blockchain starting from a block deep inside the chain where the transaction
was first confirmed, and mining up until the point that this parallel chain has more cumulative
difficulty than the “original”. This is statistically only probable to happen when the attacker
controls more than 50% of the network’s hashing power. This kind of attack is therefore called
a 51% attack. The probability to achieve this with less than 51% of the hashing power and a
transaction that has 6 confirmations, is in most cases negligible. As a rule of thumb, after six
confirmations a transaction is considered to stay in theBlockchain forever and thereforemostly
safe to accept as a payment evenwhen it contains the transfer of valueworthmillions of dollars.
As of February 2016 the total hashing-power of the Bitcoin network was over 1 exa hashes per
second, which corresponds to more than 10.000 times of what the computing power of the

46 5. Decentralization using a distributed ledger

top 1000 known super-computers combined can deliver. Bitcoin is by far the world’s biggest
distributed computing system. Although a transaction can be created using unspent transac-
tions as inputs, it can of course only be confirmed when all of its inputs are confirmed in the
Blockchain, or when they do all get confirmed with the same block. A block whose inputs are
yet unconfirmed would result in an invalid block. To prevent a coinbase transaction from be-
ing spend too early after confirmation, raising the possibility of later invalidating the coinbase
transaction due to a small Blockchain fork, the protocol specifies that a coinbase transaction
must reach “maturity” before it can be spent. This means that the transaction must have at
least 144 confirmations before being spend, which corresponds to roughly one day.

5.5 Changing consensus rules

Bitcoin has a lot of deliberate constraints hard-coded into the protocol, which were chosen
when Bitcoin was proposed in 2009. Those are among others the aim on the average time per
block, the size of blocks, and the divisibility of the currency, the total number of Bitcoins, and
the block reward amount.

The limitation of the supply of currency available will likely never change, as there was
from the beginning of the proposal a clear vision that this is the one rule that should never be
changed, no matter if the specific constrain was wisely chosen or not.

Other choices, such as the block size limit or the available opcodes, may occasionally be
changed. Proposals for changing the protocol, adding feature or just information are specified
in so called Bitcoin Improvements Proposals (BIP). To put a BIP to practive in Bitcoin, often
requires the consensus rules in the protocol to change. Due to the decentralized protocol, it is
not as easy as just updating the rules, releasing the new software, and expecting everybody to
instantly run this new version. The consequences of having some nodes run outdated software,
depend on the changes the new versionwould bring. There is a clear distinction between those
consequence, which can be categorized into soft forks and hard forks.

A soft fork is a change that makes validation rules stricter. It adds features that restrict the
set of valid transactions or blocks, such that the new version would reject some of the blocks
that the previous version would accept. As long as the majority of the network switches to the
new version, this would avoid a permanent split in the network to happen. The nodes running
this new version can then enforce their stricter rules, while the nodes running the previous ver-
sion would continue tomine on the same blockchain, since valid blocks in the new version are

5.5. Changing consensus rules 47

also valid in the previous version. But eventually a node running the previous version would
mine what is considered an invalid block by the new version. But it would be rejected by the
majority of the network, since it is running the new version. Nodes running the previous ver-
sion would therefore need to update their software to not introduce a handful of unused and
orphaned blocks. A so calledPay-To-Script-Hash transaction typewhichwewillmeet inChap-
ter 6 is one example introduced as a soft fork.

A few months before the time of this writing, there is a new interesting BIP [26], which
could make all BIP proposals made afterwards implementable by a soft forks. This proposal
will briefly be discussed in Chapter 9.

A hard fork on the other hand is a change that introduces features previously considered
invalid. The new version would then mine blocks that the previous version will not accept.
Even after the majority of nodes upgrade to the new version, the remaining nodes running the
previous version will regard the blockchain branch that the new version uses as invalid, and
continue to mine on their own branch. Hence the network will split and produce two parallel
branches of the blockchain. Those two branches could never be joined together again, which
is considered unacceptable and avoided in most cases.

Until today a hard fork has been tried to realise on the Bitcoin network. But a votingmech-
anism, in whichminers can express their willingness to update to a new version before it would
activate, would probably mitigate serious problems from a hard fork. Such a voting mecha-
nism is already in use and implemented by encoding small messages inside blocks, expressing
the miners voting favour.

Part II
A programmingmodel

Bitcoin may be the TCP/IP of money.

Paul Buchheit

6
TheScript language

Script is a programming language and the core of Bitcoin transaction processing. It re-
sembles the programming of assembly code. A Script program will execute and return true if
it was successful.

Script doesnot allow looping, andScript programsalways terminate. Thememory inScript
is accessed through a stack, in which the last item pushed onto is the first item to be popped
out. There is therefore no such thing as variable names in Script. Calculations and data ma-
nipulation are just done directly on the stack. Typically, the stack items become operands of
subsequent opcodes. When the script terminates, the top stack item is the return value.

6.1 Amodel for Script

Recall that any transaction output is always completely consumed by a spending transaction.
Therefore transactions form chains of consumed outputs up to the last one, which is still un-
spent. Every output of a transaction contains one part of a little program written in Script,

52 6. The Script language

which was previously referred to as a lock-script. It specifies conditions that must be met to
spend bitcoins from an output. In technical terms the lock-script is also called a scriptPubKey,
a name it has obtained from the white paper that specifies the Bitcoin protocol [18].

Inputs to transactions contain an unlocking-script, referred to as a scriptSig in technical
terms. It must satisfy the conditions required from the scriptPubKey of the output it spends.
Although the scriptSig can be a Script program, there is no need for it to calculate any values,
since it is evaluated without the possibility of receiving any inputs. Therefore all values can be
just directly declared in the scriptSig.

Context

The Blockchain was introduced in Chapter 5 and contains the history of all transactions ever
made and agreed upon in Bitcoin. But for verifying transactions, the history is actually not so
important. Instead, it is the currentlyunspent transactionswhichmatter. Due to theBlockchain,
at any given time the network has implicitly also agreed upon a set of valid unspent transaction
outputs (UTXO). The set of UTXO contains the transaction hashes, acting as unique identi-
fiers, output indices, output amounts and scriptPubKey for all the unspent transaction outputs.
This set therefore contains the only possible unspent transaction outputs from which any new
transaction or chain of transaction must spend.

In the model, the set of UTXO is accessible in the context through a functionC , which as
input takes a transaction hash, an output index and a parameter, and returns either the output
amount or scriptPubKey, depending on the parameter.

More specifically,
C is a function that returns an unspent transaction output from the set of UTXO.
C(h, n, 0) = v, whereh is a transactionhash,n is the output index andv is thebitcoin amount
for this specific transaction output.
C(h, n, 1) = P , where P is the scriptPubKey for this specific output.

Transactions

Transactions are simply formalized as a composition of inputs and outputs, defining a pair. The
transactions of the model therefore intuitively resemble Bitcoin transactions.

A transaction t can be defined as follows:

6.1. A model for Script 53

t = (Ĩ , Õ, l), where
Ĩ = (I1, . . . , In), n : # of inputs in t
Õ = (O1, . . . , Om), m : # of outputs in t
l = is the locktime of the transaction

Ii is the i-th input of transaction t, and therefore has input index i.
Thus,
Ii = (hi, ni, Si, seqi), where Si is the scriptSig satisfying the scriptPubKey from the transac-
tion with hash hi and output index ni. The value seqi specifies the sequence number of this
input. As mentioned in Chapter 4, it is assumed that the sequence number is regarded as a
relative locktime specified in the Bitcoin proposol BIP68 [14].

Oj is the j-th output of transaction t, and therefore has output index j.
Thus,
Oj = (Pj, vj), where vj is some bitcoin amount being sent to this output, andPj is the script-
PubKey that locks those bitcoins.

Updating the context

Unspent transactions that are added to the blockchainmust also be added to the set of unspent
transaction outputs (UTXO). At the same time, the outputs from which those transactions
spend must be removed from the set of UTXO.

In the following, vi denotes the the amount contained in the output that the i-th input
is referencing, and vj is the amount locked to the j-th output of transaction t. Furthermore,
Pi is the scriptPubKey of the transaction output refernced by the i’th input of transaction t.
Concatenating the scriptSig Si with the scriptPubKey Pi yields what will be called a Script
program.

A transaction is valid if: for all inputs the corresponding Script programs are valid; the
total amount of bitcoins send with the transaction outputs do not exceed the total amount
referencedwith the inputs; the locktimeof the transaction is not in the future; and the sequence
number for each input has reached “maturity”. Tounderstand the use of locktime and sequence
number, recall their definition from Section 4.2. Specific details will follow in this chapter. To
decide if a transaction must update the context, exactly these conditions must be met.

54 6. The Script language

∀Ii ∈ Ĩ : Si.C(hi, ni, 1)
∗→ valid

∑
Ii∈Ĩ

C(hi, ni, 0) ≥
∑
Oj∈Õ

vj past(l) mature(seqi)

C ▷ (Ĩ , Õ, l) → C ′

where C ′ = C −[(hi, ni, k) ↑ | Ii ∈ Ĩ , k ∈ {0, 1}]
+[(h(t), nj, 0) 7→ vj, (h(t), nj, 1) 7→ Pj | Oj ∈ Õ]

If past(l) is true, it simply means that the locktime of the transaction is set to a date, or
block number, that is not in the future. For mature(seqi) to be true, the output that input
Ii spends must have been added to the UTXO for a timespan of at least the one that seqi de-
fines. The details regarding the notion of time in the context are omitted, but could basically
just be added as an additional structure. Further technical rules defining the maximum size of
transactions and programs are left out of themodel of the context, but will bementionedwhen
applicable later.

In the resulting context, the the spent transaction outputs are removed, while the outputs
of transaction t are added toC , where h(t) is the transaction hash.

Technically, transactionsupdating the context areprovidedbynewblocks to theblockchain.
Transactions are not explicitly orderedwithin a block. But since an input always spends exactly
one output, it is trivial to rearrange them into chainswhere necessary, and thenby starting from
the tail of each chain, checking that the transactions are valid and applying the update of the
context for each transaction.

Script

Script is a simple, stack-based and purposely Turing incomplete language without loops. It
is essentially a list of instructions, informally referred to as Script words, but technically called
opcodes. As we already discussed, a Script program always consists of a scriptSig with a script-
PubKey appended to it.

Recall that a typical transaction transfers bitcoins with its outputs to a destination address
D, simply by encumbering future spending of the bitcoins with two things the spender must
provide together with the scriptSig of a spending traansction:

• a public key that, when hashed, yields the destination addressD embedded in the script-
PubKey, and

6.1. A model for Script 55

• a signature to show evidence of the private key for the public key just provided.

These instructions are provided by programming the scriptPubKey using Script. Butmuch
more complex Script programs are possible. The Script language provides flexibility to change
the parameters of what is required to spend the transferred bitcoins. The scriptPubKey could
for example be programmed to require two private keys, or a combination of several, or even
no keys at all.

Anyone-Can-Pay

Lets take a look at the simplest possible Bitcoin Script:
scriptPubKey: (empty)
scriptSig: OP_TRUE

The scriptPubKey is empty, so there is no specific condition that must bemet to spend the
funds from a transaction output with this scriptPubKey. However, one general conditionmust
always be met. A Script program must terminate with the value true left as top element on
its stack. Otherwise, the whole transaction is marked as invalid. For our empty scriptPubKey
above, the scriptSig therefore suffice to use the opcode OP_TRUE, which simply pushes the
value true to the stack. In fact, since true is represented by any value different from zero, also
any other operation pushing some value different from 0 could have been used instead. Details
regarding the representation of true and false will be mentioned later for “Stacks and values”.
After that instruction, the program reaches its end and will be considered valid.

A transaction output containing this kind of scriptPubKey would be spendable by anyone,
and is therefore also called an Anyone-Can-Pay transaction. But in particular the miner who
creates the block that includes this transaction can spend it. He could spend the output im-
mediately within the same block it is added to, by creating a transaction that references those
funds in its input, and provides the scriptSig from above. The scriptPubKey in the output of his
transaction should then contain the typical instructions that lock the funds to his own Bitcoin
address.

Pay-To-PubKey

Let’s now take a look at a more useful Script program, which is a type of transaction called a
Pay-To-PubKey. The name scriptPubKey and scriptSig originate from this type of transaction:

56 6. The Script language

Table 6.1.1: The execution of a Pay-To-PubKey transaction type

Stack Script Description

(empty) <sig> <pubKey> OP_CHECKSIG The scriptSig and
scriptPubKey is combined.

<sig> <pubKey> OP_CHECKSIG The constant <sig> is
pushed to the stack.

<sig> <pubKey> OP_CHECKSIG The constant <pubKey> is
pushed to the stack.

true (empty) Signature is checked for top
two stack items and evaluates
to true if correct.

scriptPubKey: <pubKey> OP_CHECKSIG
scriptSig: <sig>

The constant “pubKey” refers to a public key of a ECDSA key-pair and “sig” to a signa-
ture for that public key. When executed, they will simply be pushed onto the stack, which is
indicated by using angle brackets (“< >”) around them. We will later discuss more details
regarding the opcodes that push data. The next instruction in the program to consider is the
opcode OP_CHECKSIG. It involves a lot of steps to check that the provided signature is for the
spending transaction and provided public key. It will also be thoroughly discussed later.

The Script program, consisting of combining the scriptSig and scriptPubKey from our ex-
ample above, is then <sig> <pubKey> OP_CHECKSIG. The execution is from left to right
and can be seen in Table 6.1.1.

The Pay-To-PubKey transaction type was used by early versions of the Bitcoin protocol
and is still supported by the network. Its disadvantage is that it involves long public keys in the
output of transactions. It has been outdated by another transaction type called Pay-To-PubKey-
Hash.

Pay-To-PubKey-Hash

Instead of using a public key directly, a Pay-to-PubKey-Hash transaction uses a Bitcoin address.
As described in Section 4.3, there is a direct correspondence between a public key and aBitcoin
address, since the Bitcoin address consists of the hashed value of the public key. The scriptPub-
Key of a Pay-To-PubKey-Hash only incorporates this hashed value, which is smaller than the

6.1. A model for Script 57

public key. The public key should then instead be provided by the scriptSig. The advantage is
that it reduces the size of the UTXO, which contains all the unconfirmed transaction outputs
and therefore also the scriptPubKeys. But it increases the overall amount of data stored in the
blockchain. This transaction type integrates well with the notion of value transfer. There is
only the need of exchanging Bitcoin addresses, which are shorter than public keys and whose
accuracy can be checked with the checksum inside the address. The scriptSig containing the
public key is provided by the receiver of the funds, and he will as a matter of course know his
own public key.

The Script program is similar to the Pay-To-PubKey above, but with the additional step of
checking that the provided public key corresponds to the hash value in the scriptPubKey:
scriptPubKey: OP_DUP OP_HASH160 <pubHash>

OP_EQUALVERIFY OP_CHECKSIG
scriptSig: <sig> <pubKey>

The execution is shown in Table 6.1.2.

Pay-To-Script-Hash

To simplify the use of complex transaction scripts greatly, yet another type of transaction called
a Pay-to-Script-Hash (P2SH) was standardized in the BIP16 proposal in 2012 [1]. It allows
transactions to be sent to the hash value of a script instead of the scriptPubKey itself. The
script hash can be encoded similar to a Bitcoin address. To spend bitcoins sent as a P2SH, the
recipient must provide a script matching the script hash, and data that makes this script valid.
The scriptPubKey is defined as:

scriptPubKey: OP_HASH160 <20-byte-hash-value> OP_EQUAL
Afirst sight, this scriptPubKeymay look too simple. Before the P2SH transaction typewas

defined, this output could have been simply spent by providing a hex string, whose hash cor-
responds to 20-byte-hash-value referenced in the scriptPubKey. But BIP16 introduced
a special rule regarding exactly this scriptPubKey, recognized by its pattern, and not directly
enforced through the opcodes.

The P2SH transaction locks the output to the hash value of what it expects to be a script.
It is equivalent to saying “pay to a script with this hash”, and the sender only needs to know the
much shorter and simpler hash value. The script whose hash was locked in the output is then
referred to as the redeem script. When the funds must be spend, this redeem script must be
presented in the scriptSig, together with values that satisfy it. The redeem script is presented

58 6. The Script language

Table 6.1.2: The execution of a Pay-To-PubKey-Hash transaction type.

Stack Script Description

(empty) <sig> <pubKey>
OP_DUP OP_HASH160
<pubHash>
OP_EQUALVERIFY
OP_CHECKSIG

The scriptSig and
scriptPubKey is combined.

<sig> <pubKey> OP_DUP OP_HASH160
<pubHash>
OP_EQUALVERIFY
OP_CHECKSIG

Constants are added to the
stack.

<sig> <pubKey>
<pubKey>

OP_HASH160 <pubHash>
OP_EQUALVERIFY
OP_CHECKSIG

Top stack item is duplicated.

<sig> <pubKey>
<pubKeyHash>

<pubHash>
OP_EQUALVERIFY
OP_CHECKSIG.

Top stack item is hashed.

<sig> <pubKey>
<pubKeyHash>
<pubHash>

OP_EQUALVERIFY
OP_CHECKSIG.

Constant added.

<sig> <pubKey> OP_CHECKSIG Equality is checked between
the top two stack items.

true (empty) Signature is checked for top
two stack items and
evaluates to true if correct.

6.1. A model for Script 59

in the scriptSig through a single push that pushes the whole redeem script in its serialized form
onto the stack. The P2SH script is then executed in two stages.

First, the redeem script that is present on the stack is checked against the hash value from
the scriptPubKey, just as the instructions would suggest. But if the hash matches, then also
the whole scriptSig including the redeem script is executed on its own andmust of course also
evaluate to true.

Using P2SH, bitcoins can be send to addresses secured in various unusual ways, without
knowing about the details of how the security is set up in a script. P2SH has been typically
used to make it much easier to pay to a so called multisignature output, in which a number
of signatures from different public keys can be required. With P2SH a sender only needs to
know the corresponding script address, instead of knowing all the public keys that are part of
the multisignature. It is then the burden of the recipient to provide the multisignature script
when spending the funds.

Just like P2PKH, also P2SH shifts the burden in data storage for a long script from the
output, that is in the set of UTXO, to the input, stored solely in the blockchain.

Stacks and values

We have seen that Script uses one stack, onto which values can be pushed and popped during
execution. The stacks holds byte vectors. When represented as numbers, byte vectors are in-
terpreted as little-endian variable-length integers with themost significant bit determining the
sign of the integers. This will from now on just be denoted as 64 bit signed integers. The value
for false is zero or negative zero, using any number of bytes, or an empty array, and true is
anything else.

For our formal model of Bitcoin transactions, we will specify Script with two stacks, each
of which have a different purpose. The stack we saw being used in the examples above was the
value stack, which we will denote as ṽ. Furthermore:
B̃ is the Boolean execution stack to keep track of the flow control. Initially it is empty, and
when a Script program terminates, it must be empty.
P is a Program written in Script.

At termination, a transaction will be valid if true, which is any value different from 0, is
on the top of the value stack ṽ. Furtermore, the Boolean execution stack B̃ must be empty at
termination.

60 6. The Script language

6.2 Script words – commands and functions

The labeled names of instructions in a Script program are informally called Script words. They
can be regarded as commands and functions, and in technical terms are just referred to as op-
codes. There are some opcodes which existed in very early versions of Bitcoin but were re-
moved. From time to time new functionality to opcodes are added by means of carefully de-
signed and executed soft forks (see Section 5.5). This is done using e.g. specially reserved
opcodes labeled OP_NOP1 to OP_NOP10, which before such update is applied have no instruc-
tion assigned to them, and are simply skipped when encountered.

The labeled names of opcodes are not directly expressed as such in Script programs. They
instead appearwith aunique1bytehexadecimal value, which is assigned to eachof theopcodes.
Not all possible 1 byte hexadecimal values represent an opcode. A Script program will termi-
nate and mark the transaction as invalid if an unassigned hexadecimal value is being evaluated
as an opcode. In the following line and when applicable, we will always refer to the opcodes
using their assigned labeled names, which is of course much easier than remembering their
assigned hexadecimal value. Just keep in mind that the names are only representative.

In the following, a few opcodes from different categories are presented together with their
hexadecimal representation in squared brackets and their semantics in our model. The rest of
the opcodes are left for the appendix. Opcodes comparing values or manipulating them, with
the exception of OP_SIZE, OP_CHECKLOCKTIMEVERIFY and OP_CHECKSEQUENCEVERIFY,
pop those values andonly leave the result on the stack. Thiswill bementionedmore specifically
when wewill encounter those opcodes. But it will also be clear from the execution rules below.

Constants

The following opcodes push constants to the stack, without manipulating any values. For now
we will only consider the value stack ṽ and first introduce the Boolean stack B̃ when we look
at opcodes regarding the flow control.

OP_1NEGATE [0x4f]: Pushes -1 onto the stack.

ṽ, OP_1NEGATE.P → ṽ :: −1, P
OP− 1NEGATE

6.2. Script words – commands and functions 61

OP_0 [0x00]: Pushes 0 onto the stack.

ṽ, OP_0.P → ṽ :: 0, P
OP− 0

OP_1 [0x51]: Pushes 1 onto the stack.

ṽ, OP_1.P → ṽ :: 1, P
OP− 1

OP_2 [0x52]: Pushes 2 onto the stack.

ṽ, OP_2.P → ṽ :: 2, P
OP− 2 : Pushes 2 onto the stack

. . .

OP_16 [0x60]: Pushes 16 onto the stack.

ṽ, OP_16.P → ṽ :: 16, P
OP− 16

There are numerous ways to push any arbitrary bytes of data onto the stack. By the current
consensus rule of the Bitcoin protocol, themaximum push of data allowed in a Script program
is 520 bytes. Any transaction containing a script with a greater push than 520 bytes of data
will simply be rejected by the network and is considered invalid. The limitation is however
not a technical one. There exist opcodes that could potentially push data of up to 4GB of data.
Without the need of changing the Script language, the 520 bytes limit could hence be lifted
with an update to the consensus rules, but which would require a hard fork.

There are unlabeled opcodes that push data of 1 to 75 bytes onto the stack, which follow
after the call to the opcode. The opcodes are assigned to hexadecimal values equal to the size
of data they push, from [0x01] to [0x4b].

[0x01]: Pushes the following 0x01 = 1 byte onto the stack.

d is 1 byte
ṽ, [0x01].d.P → ṽ :: d, P

OP− PUSH1

d is1 byte
ṽ, [0x01] → ∅, invalid tx OP− PUSH1

62 6. The Script language

Note that d is the next 1 byte in the Script program, following the call to [0x01]. Similarly,
[0x02] pushes the next 2 bytes onto the stack, and so on. If the push is the last opcode, hence
there is no data to push, the transaction is marked invalid.

If data to be pushed contains between 76 and 520 bytes, then opcodes with label names
OP_PUSHDATA1, OP_PUSHDATA2 and OP_PUSHDATA4 must be used. When they are called,
then the next 1, 2 or 4 bytes of data contains the number of bytes it will push onto the stack,
respectively.

OP_PUSHDATA1 [0x4c]: The next byte contains the number of bytes to push.

n is 1 byte d is n bytes
ṽ, OP_PUSHDATA1.n.d.P → ṽ :: d, P

OP− PUSHDATA1

n.d < n+ 1 bytes in size
ṽ, OP_PUSHDATA1.n.d → ∅, invalid tx OP− PUSHDATA1

Note that n is the 1 byte containing the number of bytes to push onto the stack, and d is
the data to be pushed. Since n is only 1 byte, the maximum bytes of data OP_PUSHDATA1
can push is 255 bytes. To push 256 to 520 bytes, the opcode OP_PUSHDATA2 can be used.
Finally, OP_PUSHDATA4 does not add any further functionality, since it is not allowed to
push more than 520 bytes currently. But it may still be used to push any allowed number of
bytes. Using OP_PUSHDATA4 always results in a bigger program size, since it requires four
bytes to denote how many bytes it will push, instead of e.g. only one or two.

In the example we have already seen the simplified notation of “< >” is used to denote the
push of data inside the brackets. This is a small-hand notation for the minimal size data push
using the smallest possible opcodes. It is always favourable to push data in its most compact
form, using as few total bytes as possible.

The last opcode regarding constants isOP_SIZE.Note, that the opcodeOP_SIZE [0x82]
does not pop its operand, but pushes the string length of the top element of the stack.

ṽ :: vn, OP_SIZE.P → ṽ :: vn :: |vn|, P
OP− SIZE

Stackmanipulation

The following opcodes manipulate the value stack. Their execution should be clear from the
specification of the rules below.

6.2. Script words – commands and functions 63

OP_DROP [0x75]: Removes the top stack item.

ṽ :: vn, OP_DROP.P → ṽ, P
OP−DROP

OP_DUP [0x76]: Duplicates the top stack item.

ṽ :: vn, OP_DUP.P → ṽ :: vn :: vn, P
OP−DUP

OP_IFDUP [0x73]: If the top stack value is not 0, duplicate it.

vn ̸= 0

ṽ :: vn, OP_IFDUP.P → ṽ :: vn :: vn, P
OP− IFDUP1

vn = 0
ṽ :: vn, OP_IFDUP.P → ṽ :: vn, P

OP− IFDUP0

OP_SWAP [0x7c]: The top two items on the stack are swapped.

ṽ :: vn−1 :: vn, OP_SWAP.P → ṽ :: vn :: vn−1, P
OP− SWAP

Logic

Thereare alsoopcodesperforming logical operations. Themost important isOP_EQUAL [0x87].
It returns 1 if the inputs are exactly equal, 0 otherwise.

vn−1 = vn
ṽ :: vn−1 :: vn, OP_EQUAL.P → ṽ :: 1, P

OP− EQUAL1

vn−1 ̸= vn
ṽ :: vn−1 :: vn, OP_EQUAL.P → ṽ :: 0, P

OP− EQUAL0

Arithmetic

Script has a number of opcodes involving arithmetic functions. Those arithmetic opcodes do
not interpret numbers bitwise, but evaluate them numerically, so that e.g. 0x01 = 0x0001 =

0x000001. Numbers are limited to signed 8 byte integers, but when used as operands they
are not allowed to be longer than 4 bytes, otherwise the transaction is immerdiately marked as
invalid. However, the result of an arithmetic operation is allowed to overflow!

64 6. The Script language

For the following arithmetic opcodes we assume that vn−1 ↓ n1, vn ↓ n2 and v′ ↓ n3,
all of which are 4 byte signed integers.

OP_1ADD [0x8b]: 1 is added to the input.

ṽ :: vn, OP_1ADD.P → ṽ :: vn + 1, P
OP− 1ADD

OP_SUB [0x94]: b is subtracted from a.

vn−1 − vn = v′

ṽ :: vn−1 :: vn, OP_SUB.P → ṽ :: v′, P
OP− SUB

OP_BOOLAND [0x9a]: If both a and b are not 0, the output is 1. Otherwise 0.

vn−1 ̸= 0 ∧ vn ̸= 0

ṽ :: vn−1 :: vn, OP_BOOLAND.P → ṽ :: 1, P
OP− BOOLAND1

vn−1 = 0 ∨ vn = 0

ṽ :: vn−1 :: vn, OP_BOOLAND.P → ṽ :: 0, P
OP− BOOLAND0

OP_NUMEQUAL [0x9c]: Returns 1 if the numbers are equal, 0 otherwise.

vn−1 = vn
ṽ :: vn−1 :: vn, OP_NUMEQUAL.P → ṽ :: 1, P

OP− NUMEQUAL1

vn−1 ̸= vn
ṽ :: vn−1 :: vn, OP_NUMEQUAL.P → ṽ :: 0, P

OP− NUMEQUAL0

Cryptographic functions

Script offers a lot of cryptographic opcodes. A handful of them involve hash functions, some
of which are presented in the following.

OP_HASH160 [0xa9]: The input is hashed twice: first with SHA-256 and then with
RIPEMD-160.

ṽ :: vn, OP_HASH160.P → ṽ :: sha256(ripemd160(vn)), P
OP− HASH160

6.2. Script words – commands and functions 65

OP_HASH256 [0xaa]: The input is hashed two times with SHA-256.

ṽ :: vn, OP_HASH256.P → ṽ :: sha256(sha256(vn)), P
OP− HASH256

Cryptographic hash-puzzles

With these few opcodes we can already create our own scriptPubKey, such that it becomes
spendable by solving a hash-puzzle.
Lets create the following lock-script.
scriptPubKey: OP_HASH256 <2fcdec9164a29c9986114244a

21b81cc9f459249553a716034d00d1a6ce5b
5f2> OP_EQUAL

Note that if the opcodeOP_HASH160would have been used instead of OP_HASH256, then
the scriptPubKey would have been interpreted as a Pay-To-Script-Hash as discussed previ-
ously! But this transaction output instead becomes spendable, if provided with just some data
that hashed twice returns 2fcdec9164a29c9986114244a21b81cc9f459249553a7160
34d00d1a6ce5b5f2. This is generally a very hard problem due to the sheer amount of pos-
sible inputs. But with the hint “The colour of the sky“, we can come up with the right answer:
blue! The string ”blue“ hashed twice returns the hash-value from above.

We can then create a transaction spending the output by providing the scriptSig <blue>.
The evaluation of the complete Script is thus <blue> OP_HASH256 <2fcdec9164a29c9
986114244a21b81cc9f459249553a716034d00d1a6ce5b5f2> OP_EQUAL and can be
seen in Table 6.2.1.

This leaves true on the value stack after a successful termination of the Script program, and
the transaction would be valid.

Although this program may seem simplistic and of limited use, the principle behind it is
needed to construct complex applications, which will be discussed in Chapter 8.

Checking signatures

One of the most important but also complex opcode is OP_CHECKSIG. We have already en-
countered it in one of the examples before. Its purpose is to make sure that the spending trans-
actionmust provide a valid signature from the recipient of the funds. It expects a signature and
public key on the value stack when executed.

66 6. The Script language

Table 6.2.1: The Script program of a transaction containing a hash puzzle

Stack Script Description

(empty) <blue> OP_HASH256
<2fcd...> OP_EQUAL

The scriptSig and scriptPubKey is
combined.

<blue> OP_HASH256
<2fcd...> OP_EQUAL

The constant <blue> is pushed
on the stack.

<2fcd...> <2fcd...> OP_EQUAL The top item <blue> is hashed
twice.

<2fcd...> <2fcd...> OP_EQUAL The given hash is pushed to the
stack.

true (empty) The hashes are compared, leav-
ing true on the stack.

The formalization of OP_CHECKSIG involves a function SignatureChk, which returns
true if the signature is valid, and which will be explained later.

OP_CHECKSIG [0xac]: Verifies signature and public key against the transaction spend-
ing it.

SignatureChk[t = (Ĩ , Õ, l)] = true

ṽ :: <sig> :: <pubkey>, OP_CHECKSIG[t = (Ĩ , Õ, l)].P, → ṽ :: 1, P,
OP− CHECKSIG1

SignatureChk[t = (Ĩ , Õ, l)] ̸= true

ṽ :: <sig> :: <pubkey>, OP_CHECKSIG[t = (Ĩ , Õ, l)].P, → ṽ :: 0, P,
OP− CHECKSIG0

To validate the provided signature, OP_CHECKSIG needs information about the transac-
tion from the context. This information is provided by the annotation. It contains the spending
transaction itself, t = (Ĩ , Õ, l).

There is an opcode called OP_CHECKMULTISIG, which instead of checking one signature
against the transaction for a public key checks a specified number of signatures for different
public keys. This is also called M-of-N multisignature.

OP_CHECKMULTISIG [0xae]: If all signatures are valid, 1 is returned, 0 otherwise. Due
to a bug in the original implementation of Script, one extra unused value is removed from the

6.2. Script words – commands and functions 67

stack. Therefore the stack must contain one extra value from below, which is usually just set to
0. In the execution rule below, this value is simply denoted as vdrop.

SignatureMultiChk[t = (Ĩ , Õ, l)] = true

ṽ :: vdrop :: < sig1 >:: · · · ::< sigM >::< M >::

< pub1 >:: · · · ::< pubN >::< N >,

OP_CHECKMULTISIG[t = (Ĩ , Õ, l)].P

→ ṽ :: 1, P,

OP− CHECKMULTISIG1

SignatureMultiChk[t = (Ĩ , Õ, l)] ̸= true

ṽ :: vdrop :: < sig1 >:: · · · ::< sigM >::< M >::

< pub1 >:: · · · ::< pubN >::< N >,

OP_CHECKMULTISIG[t = (Ĩ , Õ, l)].P

→ ṽ :: 0, P,

OP− CHECKMULTISIG0

Locktime

The locktime of a transaction was mentioned earlier. It is the value of a transaction that de-
notes the earliest time after which it can be accepted. But it is possible to also use opcodes
that programmatically enforce a spending transaction to contain a locktime of at least some
specific value. The locktime is a 4 byte unsigned integer, and therefore can be between 0 and
4.294.967.295. As discussed in Section 4.2, when the value is below500.000.000 it represents
the earliest block number after which the transaction can be confirmed in the blockchain. Oth-
erwise, it denotes a UNIX timestamp and the latest date that can be encoded as a timestamp
in the locktime is the 7th February, 2106.

To check the locktime against a value specified in the scriptPubKey, the opcode OP_CLTV
[0xb1] is used. It needs to receive this transaction’s locktime through an annotation. The
function that retrieves the locktime from the annotation is calledLocktimeChk.

Just as for the opcode OP_SIZE, the opcode OP_CLTV does not remove its operand. The
reason for this behaviour is due to some historic background. This opcode was introduced
with a soft fork to repurpose the skip operation OP_NOP2. Old clients will therefore still regard
OP_CLTV as a skip operation, while new clients will understand its new purpose and make
sure that it evaluates to true. Hence both old and new clients can still continue to be part of

68 6. The Script language

the same network, while new clients aremore restrictive and as amajority can enforce the new
restrictions. It would be good to have an opcode that instead simply pushes its result onto the
stack. But introducing OP_CLTV with a soft fork did limit the possibilities of the opcode to
simply either evaluate to true and continue execution, or immediately mark the transaction as
invalid.

LocktimeChk[t = (Ĩ , Õ, l)] = true

ṽ :: <locktime>, OP_CLTV [t = (Ĩ , Õ, l)].P, → ṽ, P,
OP− CLTV1

LocktimeChk[t = (Ĩ , Õ, l)] = false

ṽ :: <locktime>, OP_CLTV [t = (Ĩ , Õ, l)].P, → ṽ, invalid tx,
OP− CLTV0

Just as for the locktime, a similar opcode exists for the sequence number. The function that
can retrieve the sequence number through the annotation is called SequenceChk. Recall,
that whereas the locktime is a value specified for the whole transaction, the sequence number
is specified for each input and can differ. The opcode is called OP_CSV [0xb2].

SequenceChk[t = (Ĩ , Õ, l)] = true

ṽ :: <sequence>, OP_CSV [t = (Ĩ , Õ, l)].P, → ṽ, P,
OP− CSV1

SequenceChk[t = (Ĩ , Õ, l)] = false

ṽ :: <sequence>, OP_CSV [t = (Ĩ , Õ, l)].P, → ṽ, invalid tx,
OP− CSV0

The functionsLocktimeChk andSequenceChk check the actual locktime, or sequence
number, of the transaction t against the valueon the stack. But there are a fewmore rules, which
are described in the proposal of the corresponding opcodes in BIP65 [22] and BIP112 [6]. All
the needed values are available through the stack or the annotation containing the whole trans-
action t. We will therefore just informally describe the LocktimeChk ad SequenceChk

functions.
The functionLocktimeChk will return false if

• the stack is empty, or

• the top item on the stack is less than 0, or

• the locktime type (height vs. timestamp) of the top stack item and the locktime are not

6.2. Script words – commands and functions 69

the same, or

• the top stack item is greater than the transaction’s locktime field, or

• the sequence field of the transaction input is 0 (disables the locktime for this input).

OtherwiseLocktimeChk returns true.
Likewise for SequenceChk, rules dictate that the function returns false if

• the stack is empty, or

• the top item on the stack is less than 0, or

• the top item on the stack has the disable flag (1 « 31) unset, and

– the transaction version is less than 2, or

– the transaction input sequence number disable flag (1 « 31) is set, or

– the relative locktime type is not the same, or

– the top stack item is greater than the transaction sequence.

Otherwise SequenceChk returns true. Recall fromChapter 4 that the current interpre-
tation used for the sequence number remains impractical. However, the rule and opcode de-
scribed above could become very meaningful when implemented, and are expected to be part
of the consensus rules of Bitcoin within the next few months. We therefore find it appropriate
to design the model with this functionality in mind.

The sequence number denotes a relative time that must have passed before the output can
be spent. This is also refereed to as the reach of “maturity” for the parent transaction output.
But the sequence number is not simply a 4 byte unsigned integer like the locktime. Whereas
for the locktime, the distinction between a block representation and a timestamp was solely
based on its value, the sequence number is instead repurposed by BIP68 [14], such that the
distinction between a relative block representation and relative timespan is determined by the
22nd bit of the sequence number. When this value is set to 1, the sequence number denotes
a timespan in units of 512 seconds granularity, which is chosen since a block is mined roughly
every 600 seconds. The specification only interprets 16 bits of the sequence number as relative
lock-time, and allows for a year of relative lock-time, while the remaining bits of the sequence
number allow for future expansion of the sequence number.

70 6. The Script language

Flow control

All the opcodes presented did so far not use the Boolean execution stack B̃. The following
opcodes regard the flow control and explain how they manipulate and use this special stack.

The flow control has until now just been ignored by assuming that all opcodes will be exe-
cuted. But the opcodesmust only execute if it is not present in an if/else-clause, or if the clause
statement was true. We will add a special rule called BOOL-RELATION to each of the opcodes.

Tocheck if the execution is currently in an if/else-clause, anopcodeo ̸∈ { OP_IF, OP_NOTIF,
OP_ELSE, OP_ENDIF } must check the top element of B̃, and only execute if it differs from
zero. Otherwise, the opcode will be skipped and execution of the program continues with the
next opcode, using of course the same rule.

BOOL-RELATION: General flow control rule. If not currently in an if/else-clause, or pre-
vailing clause-statement was true, then execute opcode:

o ̸∈ {OP_IF, OP_NOTIF, OP_ELSE, OP_ENDIF } top(B̃) ̸= 0 ṽ, o.P → ṽ ′, P

ṽ, o.P, B̃ → ṽ ′, P, B̃

BOOL-RELATION-SKIP: General flow control rule. If the statement for the if/else-clause
was not true, then skip opcodes within this clause:

o ̸∈ {OP_IF, OP_NOTIF, OP_ELSE, OP_ENDIF } top(B̃) = 0 ṽ, o.P → ṽ, P

ṽ, o.P, B̃ → ṽ, P, B̃

To indicate the execution of an if/else-clause, the opcodes for the flow control OP_IF,
OP_NOTIF, OP_ELSE and OP_ENDIF must manipulate the Boolean stack B̃ accordingly.

But just as for the other opcodes above, also all the opcodes for the flow control execute
only if the top element of B̃ is not zero, meaning that they are not being executed in an if/else-
clause, or that this part of the clause must execute. The opcode OP_IF must decide if the op-
codes within its clause must execute or not. It is decided by checking if the top element of the
value stack is not zero, meaning that the if-statement is true. To indicate that this part must
execute, 1 is then pushed onto the Boolean stack B̃ and the top value of the value stack ṽ is
removed.

OP_IF [0x63]:

6.2. Script words – commands and functions 71

vn ̸= 0 top(B̃) ̸= 0

ṽ :: vn, OP_IF.P, B̃ → ṽ, P, B̃ :: 1
OP− IF1

If the top element of the value stack is 0, meaning that the guard is false, then 0 is pushed
onto B̃ to indicate that this if/then-clause must not be executed.

top(B̃) ̸= 0

ṽ :: 0, OP_IF.P, B̃ → ṽ, P, B̃ :: 0
OP− IF0

If the value stack is empty, then the transaction is marked as invalid.

∅, OP_IF.P, B̃ → ∅, invalid tx, ∅
OP− IFINVALID

There also exists an opcode OP_NOTIF, which is just the negated version of OP_IF. Its
technical specification is similar to that of OP_IF and can be found in the appendix.

Script allows for consecutive OP_ELSE [0x67] to appear and execute. If the preceding
OP_IF, OP_NOTIF or OP_ELSE was not executed, then the statements following an OP_ELSE
are, and if the preceding OP_IF, OP_NOTIF or OP_ELSE was executed then the statements are
not. Just as for OP_IF, a 1 or 0 is pushed onto the Boolean execution stack B̃ to indicate that
the following opcodes must be executed, or not.

ṽ, OP_ELSE.P, B̃ :: 0 → ṽ, P, B̃ :: 1
OP− ELSE1

ṽ, OP_ELSE.P, B̃ :: 1 → ṽ, P, B̃ :: 0
OP− ELSE0

If OP_ELSE is called without a preceding OP_IF or OP_NOTIF, then B̃ must have been
empty. The whole transaction is then immediately marked as invalid.

ṽ, OP_ELSE.P, ∅ → ṽ, invalid tx, ∅ OP− ELSEINVALID

Theendof an if/else-clause ismarkedby theopcodeOP_ENDIF [0x68]. It ends an if/else
block by popping the top item of B̃. All if/else-clauses must end, otherwise the transaction
is marked invalid. Having an OP_ENDIF without a preceding OP_IF will be marked invalid
by the fact that B̃ must be empty. At the latest when a Script program ends, any unbalanced
if/else-clause will be recognized by the Boolean execution stack B̃ being non-empty.

72 6. The Script language

ṽ, OP_ENDIF.P, B̃ :: bn → ṽ, P, B̃
OP− ENDIF

ṽ, OP_ENDIF.P, ∅ → ṽ, invalid tx, ∅ OP− ENDIFINVALID

Furthermore, there are two special opcodes. One is calledOP_RETURN [0x6a] and it will
immediately mark the transaction as invalid, but can be used to store small data chunks of up
to 80 bytes. A simple application for this has in fact been used to timestamp this thesis, see the
colophon on the verso of the title page. By using OP_RETURN, its SHA256 hash digest has been
added to the Bitcoin blockchain, providing proof that the thesis existed from the time that it
was added. This whole process is done without the need of a central authority!

The other is OP_VERIFY [0x69] and checks if the top stack item is 0, and if so termi-
nates the program marking the transaction invalid. All the following opcodes OP_EQUAL,
OP_NUMEQUAL, OP_CHECKSIG and OP_CHECKMULTISIG exist as a variant called
OP_EQUALVERIFY[0x88], OP_NUMEQUALVERIFY[0x9d], OP_CHECKSIGVERIFY[0xad]
and OP_CHECKMULTISIGVERIFY[0xaf], whichdo the same as their namesake suggest, but
additionally execute the OP_VERIFY procedure afterwards. This is useful in programs that e.g.
contain more than one check. Otherwise, only the last check in a programwould be evaluated
by the rule that marks the transaction valid only if the top stack value is true.

ṽ, OP_RETURN.P, B̃ → ∅, invalid tx, ∅
OP− RETURN

ṽ :: 1, OP_V ERIFY.P, B̃ → ṽ, P, B̃
OP− VERIFY1

ṽ :: 0, OP_V ERIFY.P, B̃ → ∅, invalid tx, ∅
OP− VERIFY0

Special case

Recall, that there exist a “special” transaction output called Pay-To-Script-Hash (P2SH), see
Section 6.1. The scriptPubKey will be executed by the execution rules defined above andmust
evaluate to true. The scriptPubKey can be recognized as a P2SH by its pattern, namely if the
scriptPubKey is exactlyOP_HASH160 <20-byte-hash> OP_EQUAL.Thevalue20-byte-hash
is of course pushed by the opcode [0x14], but we will just use the notation specified by “<>”

6.3. Signature checking 73

as usual.
An additional execution procedure will be performed for a P2SH. Informally, from the ini-

tial scriptSig the last push opcode is removed, which otherwise pushes the serialized redeem-
Script to the stack. The scriptSig is then executed simply with that push opcode removed, and
must evaluate to true, in which case spending of the P2SH output is accepted.

6.3 Signature checking

The part of OP_CHECKSIG that makes it complex is the SignatureChk function. To under-
stand it, we need to take a look at how transactions can be represented as strings and then be
signed. Every transaction can be represented as a long hex string, referred to as the serialization
of the transaction. All the variable fields of the transaction are simply listed one after the other,
and they correspond directly to the values of the data structure for the transaction. This is pos-
sible, as for each variable that contains information there is a preceding variable that specifies
its length. The signature can then be produced for this serialization of the transaction.

Walk-through example of a serialized transaction

This section will give a very low-level example of how serialized transactions are composed. It
follows the exact same transaction structure already defined in Section 4.2, and which can also
be found in Table 4.2.1.

Every serialization of a transaction begins with a 4-byte version field that can specify the
rules this transaction follows. Currently the version is just 1.

Then all data fields for the transaction inputs are appended. The first 1-byte denotes the
number of inputs this transaction has. Then the 32-byte hash of a transaction which we want
to spend an output from is specified. This is followed by a 4-byte field that denotes the output
index we want to spend from. Recall that the output index of a transaction starts from zero.

Then the scriptSig data for this input follows, which starts with a 1-byte field denoting the
length of the script itself. The actual scriptSig is added in its hex string representation, which
must of course be of exactly the same size as specified with the 1-byte field before. Then a 4
byte field denoting the sequence number is specified for the input, which is typically set 0 to
deactivate its function as a relative locktime.

If the transaction hasmore thanone input, as denotedwith the field containing the number
of inputs, then the data for the next input is specified in the same way: starting again with

74 6. The Script language

the 32-byte hash of the transaction, which this input references, followed by the output index,
scriptSig size, and actual scriptSig data.

After all the inputs are specified, the outputs will be defined. The next 1-byte field contains
the number of outputs in the transaction.

The following 8-bytes contain a field that determines the amount of bitcoins being send
with this first output, represented as a 64-bit integer. For example 1 BTC, or 100.000.000
Satoshis, is represented as0x5f5e100. Then the scriptPubKeydata for that output is provided.
Again a 1-byte field first denotes the length of the scriptPubKey. Then the actual scriptPubKey
is added in its hex string representation, which must of course be of exactly the same size as
specifiedwith the 1-byte field before. Again this process is repeated for all the outputs, starting
from the field containing the amount, then the scriptPubKey size and scriptPubKey data.

Finally the 4-byte locktime of the transaction is added, which if set to zero means that the
transaction may be added to a block immediately.

The string containing all of this information corresponds to the serialization of a transac-
tion. Table 6.3.1 shows some real data as an example. The transaction from the example con-
tains only one input, and therefore spends exactly one output. The output it spends is a Pay-
To-PubKey-Hash. The scriptSig must therefore provide a signature and public key.

The scriptSig of the input to the transaction is shown in Table 6.3.1, and the signature can
of course be obtained directly from it. The scriptSig starts with the opcode in hex [0x49],
which is an unlabeled push opcode, pushing the next 0x49 = 73 bytes of data onto the stack.
Those next 73 bytes of data in the scriptSig form the signature, namely 30460221009e0339
f72c793a89e664a8a932df073962a3f84eda0bd9e02084a6a9567f75aa022100bd9
cbaca2e5ec195751efdfac164b76250b1e21302e51ca86dd7ebd7020cdc0601.

It is followed by an opcodewith the hex [0x41]. This opcode pushes the next 0x41 = 65

bytes of data onto the stack, namely 0450863ad64a87ae8a2fe83c1af1a8403cb53f53e
486d8511dad8a04887e5b23522cd470243453a299fa9e77237716103abc11a1df38
855ed6f2ee187e9c582ba6. Those 65 bytes of data are the public key to the Bitcoin address
that received the funds that are being spend with this transaction. The scriptSig is therefore of
the typical form <sig> <pubkey>, and satisfies the condition of the Pay-To-PubKey-Hash
output. But the question that remains is: how can a signature for a serialized transaction be
produced or verified?

6.3. Signature checking 75

Table 6.3.1: A serialized transaction containing one input and one output

Version: 01000000
Total input number: 01
Transaction hash: eccf7e3034189b851985d871f91384b8ee35

7cd47c3024736e5676eb2debb3f2
Output indexa: 01000000
ScriptSig size: 8c
ScriptSig: 4930460221009e0339f72c793a89e664a8a9

32df073962a3f84eda0bd9e02084a6a9567f
75aa022100bd9cbaca2e5ec195751efdfac1
64b76250b1e21302e51ca86dd7ebd7020cdc
0601410450863ad64a87ae8a2fe83c1af1a8
403cb53f53e486d8511dad8a04887e5b2352
2cd470243453a299fa9e77237716103abc11
a1df38855ed6f2ee187e9c582ba6

Sequence numberb: ffffffff
Total output number: 01
Amountc: 00e1f50500000000
ScriptPubKey size: 19
ScriptPubKey: 76a914097072524438d003d23a2f23edb65a

ae1bb3e46988ac
Locktime: 00000000

All data appear as hexadecimals.
aThe output index starts at zero. Therefore the first output of a transaction has
always index 0.
bThe sequence number is currently disabled in the Bitcoin protocol, and is
therefore typically set to 0 =0xffffffff. But as discussed previously, in fu-
ture it may be repurposed.
cThe amount must be a 64-bit integer, denoted in Satoshis.

76 6. The Script language

Generation and verification of transaction signatures

Production and verification of signatures follow steps that are similar to each other. For pro-
ducing the signature, any serialized transaction can be created as shown above, but the fields of
the scriptSig size and data in all the inputs are just left empty. When verifying a signature, the
transaction is received in its serialized form as above, and the fields for scriptSig and scriptSig
size must be set to empty.

Now follows an additional step, which is cumbersome and simply has to be accepted, since
the signature process in Bitcoin is defined in this way. For the input under consideration, we
insert into the empty fields of the scriptSig size and data the scriptPubKey of the output, which
is being spend with this input. It is important to note that this scriptPubKey does not come
from the transaction we are checking the signature for. It is the scriptPubKey originating from
the transaction output referenced with the input that we are checking the signature of, and
hence the one that the scriptSig provides the (valid) data for. To keep the confusion as small
as possible, we will in the following denote this scriptPubKey as SubScript.

From this modified serialized transaction the signature can be verified as explained using
the public key, or produced with the private key.

Specification of the SignatureChk function

TheSignatureChk function used by the ruleOP− CHECKSIG in ourmodel implements
the ECDSA signature algorithm to check signatures against public keys. The function can now
be formalized as follows.

Function signatureChk[t = (Ĩ , Õ, l)]:

1. Pop the top two elements from stack ṽ, which are expected to be<pubkey> and<sig>.

2. Create t′ = (∅̃i, Õ, l),where
∅̃i = (∅1, . . . , ∅i−1, I

′
i, ∅i+1, . . . , ∅n)

∅j = (thashj, nj, ∅), So ∅j is input Ij , but with the scriptSig removed.
I ′i = (thashi, ni, SubScript) So I ′i is input Ii, but with its scriptSig replaced by

SubScript.

3. Hash the serialized data of transaction t′ using the SHA256 function twice, yielding h′.

6.3. Signature checking 77

4. Return true if the signature <sig> can be accepted by the ECDSA signature verifica-
tion algorithm for h′ and <pubkey>, otherwise false.

Signature types

The process above describe in principle exactly how signatures are checked and produces in
Bitcoin. But there is one detail missing. The signature additionally contains a 1-byte signature
type appended to it. The signature type specifies how the signature was produced andmust be
verified. The procedure above is only used when this type is of a value representing the type
called SIGHASH_ALL.

The actual data containing the signature is therefore only the part until the last byte of
the pushed data denoted as <sig> and used in the SignatureChk function for the signa-
ture. This push containing the signature data can therefore instead simply be expressed as
<sig|hashType>, where the symbol | denotes the concatenation of the signature sig with
the 1-byte signature type hashType.

Depending on the value of the signature type, the serialized transaction used to produce or
verify a signature must be modified.

There exist three different signature types, and one additional option that can be set for
each of them.

• SIGHASH_ALL,

• SIGHASH_NONE,

• SIGHASH_SINGLE, and

• an additional option called SIGHASH_ANYONECANPAY.

To address all cases, the SignatureChk function must be modified accordingly. We will
first lookat theprocedures for thefirst three types. The last type calledSIGHASH_ANYONECANPAY
is an optional “setting”, which must be combined with any one of the first three types. Steps 1,
2 and 4 of the function stay the same. But step 3 changes as follows:

• If hashType = 0x01 (SIGHASH_ALL), thenweare in the case alreadydescribed above
and can proceed as described. This can be thought of as the process that “signs all the
outputs”

78 6. The Script language

• If hashType = 0x02 (SIGHASH_NONE), then all the outputs of the serialized transac-
tion are replaced with empty vectors. This can be thought of as “sign none of the outputs
– I don’t care where the bitcoins go.”
t′ = (∅̃i, Õ), where
∅̃i is as defined for SIGHASH_ALL above.

Õ = (

m times︷ ︸︸ ︷
∅, . . . , ∅)

∅ = (∅, ∅)

• If hashType = 0x03 (SIGHASH_SINGLE), then the transaction must have the same
number of inputs as outputs. All outputs with indices different from the input are re-
placedwith empty vectors. This can be thought of as “sign one of the outputs – I don’t care
where the other outputs go”.
t′ = (∅̃i, Õ), where
∅̃i is as defined for SIGHASH_ALL above.

Õ = (

i-1 times︷ ︸︸ ︷
∅, . . . , ∅, Oi)

∅ = (∅, ∅)

• If additionally the SIGHASH_ANYONECANPAY option is set, then hashType must be ei-
ther 0x81, 0x82, or 0x83. In other words, if the first “half-byte” of any of the previous
three signature types is8 insteadof 0, then the additional process forSIGHASH_ANYONECANPAY
is used. Theoutput Õ used in t′ is definedbyoneof the three signature types fromabove,
but the input vector is resized to one.
t′ = (I ′i, Õ), where
I ′i is as defined for SIGHASH_ALL above.
Õ is as defined by the signature types above.

Note that t′ in SIGHASH_ANYONECANPAY is produced solely to contain the input I ′i ,
which is under consideration. Therefore adding this optional setting to one of the three
types from above can be thought of as “Let other people add inputs to this transaction – I
don’t care where the rest of the bitcoins come from”.

The signature type is then appended to the serialized transaction t′ and double hashed us-
ing SHA256. This resulting hash value h′ is then used to check against the signature against
and public key as described above, or to generate the signature in the first place.

6.3. Signature checking 79

Most use cases only comprise the SIGHASH_ALL type. But the different signature types
make the signature checking flexible, because the transaction that is signed can be controlled
through the use of the types. In this way, e.g. contracts can be constructed in which each party
only signs some part of it, allowing other parts to be changed without their involvement.

Specification of the SignatureMultiChk function

The SignatureMultiChk used for the rules of OP− CHECKMULTISIG basically reit-
erates over the functionSignatureChk. It takes theN public keys and theM signatures, and
starting from the first signature it compares it using the SignatureChk function to the first
public key. If it returns true, then it will check the next signature against the next public key. If
instead it returns false, then it will continue checking the signature against the next public key,
until eventually finding a match. If using this approach does not yield a match for any one of
the signatures, then SignatureMultiChk returns false. Otherwise it returns true.

Note that this approach requires the provided signatures to be ordered in regard to the
public keys. Once a public key was checked against a signature, it will not be checked against
any other signature again. This is in spite of a check of a public key being successful or not. It
is a simple procedure, which was probably implemented this way in Bitcoin to avoid the check
of signatures to grow exponentially with the number of public keys involved.

I am very intrigued by Bitcoin. It has all the signs. Paradigm
shift, hackers love it, yet it’s derided as a toy. Just like micro-
computers.

Paul Graham

7
Variables and abstractions

Asdiscussedpreviously, Script is a low-level stack-basedTuring incomplete programming
language, which contains basic operations but lacks abstractions and functions such as declara-
tions of variables. Most programming languages comewith compilers thatmaphuman friendly
code to machine interpretable operations, also called opcodes that we met in Chapter 6.

In this chapter a high-level language for Script will be developed called NextScript, which
can be compiled to Script. It will have an easier readability and use of expressions through se-
mantics and abstractions. Numbers will for example always be represented in smallest bytes
and pushed using the smallest possible opcodes. This is favourable, since it gives compact
Script programs and also follows the current progress in standardizing transactions described
in the Bitcoin protocol, by e.g. the BIP62 proposal [25]. Furthermore, through a type sys-
temNextScript can catch obvious typing errors and guarantees the use of correct data types in
programs. Hence, a sum will for example only be calculated on two numerical values. Script
programs that would otherwise calculate the sum of hash values are prevented from being pro-
grammedwithNextScript. Wewill begin this chapter by introducing variables and expressions,

82 7. Variables and abstractions

which is an improvement to the elementary stack that Script uses, and a simplification when
dealing with data.

We will then look at commands and define the syntax of a NextScript program with its
grammar. Finally, a type system is introduced. Suggestions for optimizations on the compiler
are presented at the end of this chapter.

7.1 Variables

Script does not offer the functionality of declaring or using variables. It is therefore very dif-
ficult to manually keep track of what values are at which positions on the stack during any
moment of the runtime of a program. Although Script programs are typically compact and
somewhat limited in size, a transaction output can become permanently unspendable by acci-
dentally popping one wrong value from the stack.

Since all values accessible to a Script program are on the value stack, variables can be intro-
duced by keeping track of where on the stack the data for a variable can be found. A function
f : X ⇀ N can be defined to return the position in the stack where the data for a variable
x ∈ X is currently stored. This function will be called a variable function and its assignments
of variables to positions will be called pointers. Furthermore, a variable function is said to be
1-free if there is no variable with a pointer to 1 in the function. If a variable function is 2-free, it
means that no variables are assigned pointers to 1 and 2, and so forth.

Thecompiler ofNextScriptwill take twoarguments, aNextScript programP anda variable
function f . It returns a Script program S, denoted S = [[P]]f .

Compiling variables

Wewill now take a look athowdata for a variablex canbe computedandwill return todeclaring
variables later. For optimization reasons, the compilation involves three cases depending on
where in the stack the data is stored. In each case, the data of the variable is copied to the top
of the stack. After the compilation, all the pointers in the variable function will therefore have
increased by one, denoted as f+1. In other words, f+1(x) = f(x) + 1. A variable function
f+1 is therefore at least 1-free, which follows directly from the definition.

7.2. Expressions 83

[[x]]f = OP_DUP if f(x) = 1

[[x]]f = OP_OVER if f(x) = 2

[[x]]f = <f(x)> OP_PICK if f(x) ≥ 3

We could have used the opcode OP_PICK in all the cases. But OP_PICK requires an ad-
ditional byte in the form of a push opcode, which defines from where in the stack the value
should be obtained. To obtain smaller Script programs, it is therefore better to make it case
dependent, and use the opcodes that require the fewest bytes.

In the followingwewill see that from the syntax ofNextScript, whenever a variable is called,
the copy of its value is immediately consumed by some operation in Script. But although a
variable is not used anymore, its data will remain somewhere in the stack. This does notmatter.
When a Script program ends, only the top stack item is checked in a final step to decide if
the transaction is valid or not. This compares favourably to popping the unused values, which
would otherwise bloat the program size.

7.2 Expressions

Expressions contain strings, hash functions thatmanipulate strings, numeric values, arithmetic
functions, and logic operations to e.g. compare expressions.

Hash functions and strings

String are just defined by encumbering them in double quotes (“”). Hash values are expressed
as string values, and therefore hash functions return strings. Note that some applications, such
as e.g. hash tables, need to manipulate hash values arithmetically. But numeric values are re-
stricted to 4 bytes in Script, while hash values are of at least 20 bytes. In Script therefore no
operation between hashes and numeric values can be done in anymeaningful way. The restric-
tion of such operations is introduced with the type system in Section 7.4.

h := ripemd(h) | sha1(h) | sha256(h) | hash160(h) |
hash256(h) | ′′string′′

As already seen in Section 6.2, data in Script is pushed using opcodes OP_PUSHDATA1,
OP_PUSHDATA2 and unlabeled opcodes [0x01] to [0x4b]. The hexadecimal value of the

84 7. Variables and abstractions

unlabeled opcodes represent the number of following bytes to push, see Section 6.2 for more
details. The opcodes OP_PUSHDATA1 and OP_PUSHDATA2 must be used to push data greater
than 0x4b = 75 bytes. As previously discussed, the maximum size of a data push is limited to
520 bytes.

Depending on the size of the specific string to be pushed, the compilation is as follows.
[[′′string′′]]f = [0x01-0x4b] string If string size < 75 bytes
[[′′string′′]]f = OP_PUSHDATA1

[0x4c-0xff] string

If 75 ≤ string size < 255 bytes

[[′′string′′]]f = OP_PUSHDATA2
[0x0100-0x0208] string

If 255 ≤ string size ≤ 520 bytes

In each case, exactly one element is pushed onto the stack.
The available hash functions are:

• ripemd: Uses the RIPEMD-160 hash function

• sha1: Uses the SHA-1 hash function

• sha256: Uses the SHA-256 hash function

• hash160: Uses first the SHA-256 hash function and then the RIPEMD-160 hash func-
tion on that result

• hash256: Uses the SHA-256 hash function twice

The hash functions are simply compiled using build-in opcodes of Script.
[[ripemd160(h)]]f = [[h]]f OP_RIPEMD160
[[sha1(h)]]f = [[h]]f OP_SHA1
[[sha256(h)]]f = [[h]]f OP_SHA256
[[hash160(h)]]f = [[h]]f OP_HASH160
[[hash256(h)]]f = [[h]]f OP_HASH256

After the compilation of any expression, exactly one element is pushed onto the stack. This
is easily seen from the few possible cases of the expressions above. First the expression h is
computed, which at some point must result in a single push. An opcode for a hash function
pop that element and push its hash value onto the stack, leaving the remainder of the stack
unchanged. This will later be proven formally as a Lemma for all expressions.

7.2. Expressions 85

Expressions

We will now add arithmetic values and operations to the expressions, which are all based on
integers.

e, e1, e2 := h | ∥h∥ | integer |
e1 + e2 | e1 − e2 | − e | |e| | e++ | e−− |
min(e1, e2) | max(e1, e2)

In the expression above, x denotes a variable, and h a string expression from before. The
expression ∥h∥ returns the string length of the string value evaluated from h. Here we need to
bemore careful. TheScript opcodeOP_SIZE returns the length of a value butwithout consum-
ing it. To have a more streamlined proceeding, the compilation of this expression will instead
consume the value it pushes the length of.

[[compute(∥h∥)]]f = [[compute(h)]]f OP_SIZE OP_NIP
TheopcodeOP_SIZEfirst pushes the string length. AfterwardsOP_NIP removes the second-

to-top item from the stack, which is the value of the element whose length was just pushed.

The following expressions are integer values that are simply pushed onto the stack. For
optimization reasons, the actual opcode used to push an integermust again depend on its value.
After compiling any of them, the variable function will have increased its pointers by one.

[[integer]]f = OP_1NEGATE if integer = −1

[[integer]]f = OP_0 if integer = 0

[[integer]]f = OP_1 if integer = 1

. . .

[[integer]]f = OP_16 if integer = 16

[[integer]]f = [0x01-0x4b]integer Otherwise
Topush integers onto the stack,which are greater than16or smaller than−1, theunlabeled

opcodes [0x01] to [0x4b] must be used. Those opcodes were also used to push strings. The
value of integer on the right hand-side is byte data and represented as a 64-bit signed integer.
Since arithmetic functions are restricted to work on 4-byte integers, the integer is restricted to
the range from−231 +1 to 231 − 1, and does therefore not use the whole theoretical range of
the signed 64-bit integer representation. Although Script technically allows to push numeric
values that are outside of this range, since no arithmetic operations can be done with those

86 7. Variables and abstractions

values in Script, it is not allowed in NextScript.
The number of integer on the left-hand side will always be compiled to its smallest signed

64-bit representation. To push it using the smallest possible opcode, it is therefore case de-
pendent on the integer. For example, the number 1 is pushed onto the stack using OP_1, but
could technically also be pushed with [0x01]01. They both do the same, but while OP_1 is
only one byte in size, [0x01]01 uses one byte for the opcode and one more for the number
representation 01, and is therefore in total two bytes.

The rest of the expressions are compiled as follows.

[[e1 + e2]]f = [[e1]]f [[e2]]f+1 OP_ADD
[[e1 − e2]]f = [[e1]]f [[e2]]f+1 OP_SUB
[[|e|]]f = [[e]]f OP_ABS
[[e++]]f = [[e]]f OP_1ADD
[[e−−]]f = [[e]]f OP_1SUB
[[min(e1, e2)]]f = [[e1]]f [[e2]]f+1 OP_MIN
[[max(e1, e2)]]f = [[e1]]f [[e2]]f+1 OP_MAX

Ascompilinge1 addsonevalue to the stack, the compilationofe2 uses the variable function
f+1. All the opcodes consume their operands and only push the result onto the stack. So, e.g.
OP_ADD consumes two operands and pushes only the sum onto the stack.

The compilations above again satisfy the property that the variable function is increased
by exactly one after each compilation of an expression. The proof of this is by induction on the
size of the derivation.

Proposition. Compiling an expressions adds exactly one element to the stack. Hence the variable
function f is increased after the compilation of an expression. In other words, the variable function
is f+1 after [[e]]f is computed.

Proof. The claim may be proven by an induction on the number of steps in the derivation of e
and by showing that when compiled, the pointers in the variable function are increased by one.
Base case:
Derivation with 1 step. Then the expression consists of solely one terminal, namely a push of
“string” or integer. From the definition of compiling to a push opcode, the pointers in the
variable function are increasedby exactly one and therefore the claimholds true for those cases.
Inductive hypothesis:

7.2. Expressions 87

Suppose the claim holds true for all derivations with n ≥ 1 steps.
Inductive step:
Prove that every derivation of ewith n+1 steps when compiled increases the pointers by one
for the variable function f .
The derivation may begin with

[[|e|]]f = [[e]]f OP_ABS,
[[e++]]f = [[e]]f OP_1ADD, or
[[e−−]]f = [[e]]f OP_SUB.

Since the computations on the right hand-side can only be derived with n steps, by the
inductive assumption, the pointers of the variable function f is increased by one. Since the
opcodes OP_ABS, OP_1ADD and OP_SUB consume the top value and push the result of per-
forming an operation on it, they do not change the variable function and therefore the claim
holds true for these cases.

If instead the derivation starts with

[[e1 + e2]]f = [[e1]]f [[e2]]f+1 OP_ADD,
[[e1 − e2]]f = [[e1]]f [[e2]]f+1 OP_SUB,
[[min(e1, e2)]]f = [[e1]]f [[e2]]f+1 OP_MIN, or
[[max(e1, e2)]]f = [[e1]]f [[e2]]f+1 OP_MIN,

then, since both computations on the right hand-side must be derived with less than n

steps, each of them increase the pointers of the variable function by one. Because the opcodes
following them will decrease the variable function by exactly one, the claim holds true.

The pointers of the variable function is therefore increased by exactly one in all cases.

Logical expressions

Logical expressions perform operations returning true or false. As discussed above when
the data expressions were introduced, it should also not be possible for logical expressions to
compare hashes or data directly with arithmetic expressions, but will be taken care of with a
type system.

88 7. Variables and abstractions

l, l1, l2 := x | true | false | e1 == e2 | e1! = e2 |
e1 < e2 | e1 > e2 | e1 <= e2 | e1 >= e2 | within(e1, e2, e3) |
!l | l1&l2 | l1∥l2 | l1 == l2 | l1! = l2

Script offers two different opcodes to check for equality. One of them is OP_NUMEQUAL,
which compares two values numerically. With OP_NUMEQUAL the values are evaluated to their
smallest integer representation and are then compared to each other. It therefore compares
integers for numerical identity. The other operation is the equivalence operation OP_EQUAL,
and it compares two values bit-wise. Hence the number “1” represented as 0x01 and 0x0001
would not be equivalent, but still numerical identical.

Since numerical expressions are always used in their smallest integer representation, for
NextScript it suffices to only use the equivalence operation.

[[true]]f = OP_1,
[[false]]f = OP_0,
[[e1 == e2]]f = [[e1]]f [[e2]]f+1 OP_EQUAL,
[[e1! = e2]]f = [[e1]]f [[e2]]f+1 OP_EQUAL OP_NOT,
[[e1 < e2]]f = [[e1]]f [[e2]]f+1 OP_LESSTHAN,
[[e1 > e2]]f = [[e1]]f [[e2]]f+1 OP_GREATERTHAN,
[[e1 <= e2]]f = [[e1]]f [[e2]]f+1 OP_LESSTHANOREQUAL,
[[e1 >= e2]]f = [[e1]]f [[e2]]f+1 OP_GREATERTHANOREQUAL,
[[within(e1, e2, e3)]]f = [[e1]]f [[e2]]f+1 [[e3]]f+2 OP_WITHIN,
[[!l]]f = [[l]]f OP_NOT,
[[l1&l2]]f = [[l1]]f [[l2]]f+1 OP_BOOLAND,
[[l1∥l2]]f = [[l1]]f [[l2]]f+1 OP_BOOLOR,
[[l1 == l2]]f = [[l1]]f [[l2]]f+1 OP_EQUAL,
[[l1! = l2]]f = [[l1]]f [[l2]]f+1 OP_EQUAL OP_NOT,

Evaluation rules for expressions

The evaluation rules for expressions in NextScript are straightforward, and should be already
clear from the names. The usual operator precedence is used. In the following a selection of

7.3. Programs 89

evaluation rules are presented.

h → v
hash160(h) → hash160(v)

E− HASH160

e1 → v1 e2 → v2
e1 + e2 → v1 + v2

E− SUM

e → v
e++ → v + 1

E− INC

e1 → v1 e2 → v2 v1 < v2
min(e1, e2) → v1

E−MIN1

e1 → v1 e2 → v2 v1 ≥ v2
min(e1, e2) → v2

E−MIN2

e1 → v1 e2 → v2 v1 < v2
e1 < e2 → true E− LESS1

e1 → v1 e2 → v2 v1 ≥ v2
e1 < e2 → false

E− LESS0

e1 → v1 e2 → v2 v1 ̸= v2
e1! = e2 → true

E− NOTEQUAL1

e1 → v1 e2 → v2 v1 = v2
e1! = e2 → false

E− NOTEQUAL0

e1 → v1 e2 → v2 e3 → v3 v1 ≤ v2 ≤ v3
within(e1, e2, e3) → true

E−WITHIN1

e1 → v1 e2 → v2 e3 → v3 v1 > v2 ∨ v3 < v2
within(e1, e2, e3) → false

E−WITHIN0

7.3 Programs

Wenowturn todefining the syntaxof aNextScript programby its grammar. Recall, that a Script
program consists of two parts. A scriptSig, in which values are provided, and a scriptPubKey
containing functions and other values. With the scriptSig prepended to the scriptPubKey, the

90 7. Variables and abstractions

Script program must end with true left on the stack. Most values of a Script program will be
delivered by the scriptSig. Those can often not be provided beforehand, as this would imply
that the sender creating the output could himself spend the bitcoins again, by his capability to
create a valid input to spend from the output. Signatures must for example typically be pro-
vided with a scriptSig.

Just like Script programs, a NextScript program is made up of two parts. The first part is
the input program, which will compile to a scriptSig and delivers values. The other part is the
NextScript output program, which can contain commands and values, and compiles to a script-
PubKey. When using NextScript, values that should be provided by an input program, must
beforehand alreadybedeclared in some specialway inside the output program. Theoutput pro-
gram is therefore divided into an input and output part. The input part contains only so called
input variables, which define how the input program must deliver its values, in other words in
which order they must be provided. The output part of the output program will contain com-
mands and values, and corresponds to the actual scriptPubKey in Script. The compiler is the
same for both input and output programs. But the grammars differ between them. In the fol-
lowing we will look at output programs and their available commands.

Output programs

In this section we will look at the grammar of output programs, and how the input and output
parts are put together. But first we will see how variables inside output programs are declared
to contain values.

Declaring variables

A variable in an output program can be declared with let x = e, or let x = l. When compiled,
the variable function is updated to contain the altered pointers of the prevailing variables, and
also a pointer of the new variable x. Since the value after declaring the variable xwill be on the
top of the stack, the variable function becomes f+1[x 7→ 1]. Aswill be discussed in the section
regarding the scope, a variable will only be declared within the scope of the smallest clause it is
contained in.

The compilation for declaring a variable is thus:
[[let x = e;P]]f = [[e]]f [[P]]f+1[x 7→1]

[[let x = l;P]]f = [[l]]f [[P]]f+1[x 7→1]

7.3. Programs 91

It has already been shown, that after compiling an expression, the top stack item will con-
tain the value for the expression and the variable function f is increased to become 1-free. The
last step therefore simply sets the pointer of the new variable x to 1 inside f+1. So the variable
function is updated accordingly to become f+1[x 7→ 1].

To update the value of a variable, that variable can simply be declared again with the new
value. The variable function will then remove the old pointer of the variable and use pointer
1 instead, just as the compilation above suggests. As discussed previously though, the data of
the “old” variable is not removed from the stack.

Declaring input variables

In output programs we must also be able to declare input variables, which cannot contain any
data when the program is compiled. Input variables also allow to comprehend in an under-
standable and predictable way which data is needed to spend the transaction for which the
output program is constructed.

Writing input x : Tin will reserve the variable namex for a value, whichmust be provided
by a scriptSig. The purpose ofTin inside the declaration of an input variable is to indicate what
the type of values should be providedby an input program tobe consistentwith those expected
by the output program. Every input variablemust be declared in the beginning of a NextScript
program. The border between the input and output part of a NextScript output program is
exactly when the last input variable is declared and the first program function is called or a
variable with value defined.

Values for input variableswill first be deliveredby an input programand thewhole program
is first then being executed. Compiling input variables does therefore not involve computing
values, and hence no actual compilation to Script code is necessary. It solely involves updating
the variable function in the same way if declaring a variable.

[[input x : Tin;P]]f = [[∅]]f [[P]]f+1[x 7→1]

Grammar of output programs

Recall that a Script program must always end with the top element being true. But it can
also bemarked as invalid during execution and then terminate immediately. A commandmust
therefore always evaluate to true or false, as it would not make sense for programs solely
to encapsulate arithmetic or hash expressions. To define the grammar of an output program,

92 7. Variables and abstractions

we need to consider the possible NextScript commands that can be called inside a program. A
NextScript program can be a composition of logical expressions and commands, which will be
defined in the following. The logical expressions used outside of an if-statement are encapsu-
lated inside a check function, which makes sure that the expression evaluates to true. Every
other commandmust also evaluate totrue. If a check function or commanddoes not evaluate
to true, the transaction is instantly marked as invalid. Its implementation will be later shown
in the compilation rules. The commands take as arguments the expressions defined previously.

Some of them are expected to evaluate to e.g. a signature, public key, hash value, or values
for locktime or the sequence number. Since it is not possible to e.g. calculate a public key using
an expression, those values will typically simply be provided directly as terminal values or with
variables containing that value. In the following the available commands are presented.

Q,Q1, Q2 := let x = l; Q | let x = e; Q | check(l); Q |
sendTo(e1, e2, e3); Q |
checkSig(e1, e2); Q |
checkMultiSig(e1, · · · , eM | e′1, · · · , e′N); Q |
checkLocktime(e); Q |
checkSequence(e); Q |
if(l) {Q1 }; Q | if(l) {Q1 } else {Q2 }; Q | ϵ

• check(l): Checks if the logical expression l returns true.

• sendTo(e1, e2, e3): Creates a P2PKH instruction.
The value e1 → vsig is expected to be the signature to the corresponding public key
e2 → vpub. The value e3 → vpubH is the expected 20-bytes-hash value of the public
key.

• checkSig(e1, e2): Creates a P2PK instruction, which is outdated by the P2PKH from
above. The value e1 → vsig is the signature to the corresponding public key e2 → vpub.

• checkMultiSig(e1, . . . , eM | e′1, . . . , e′N): Creates amultisignature instruction,which
requiresM out ofN possible signatures.
Thesignaturese1 → vsig1, . . . , eM → vsigM and thepublic keyse′1 → vpub1, . . . , e

′
N →

7.3. Programs 93

vpubN are expected to be as described for the checkSig function above. To distinguish
between theexpressions containing the signatures andpublic keys, thedelimiter | is used.
Furthermore,M ≤ 20. But if used in a P2SH with sendToScript, thenM ≤ 16 due to
the 520 bytes size limit of the push of the redeem script.

• checkLocktime(e): Creates a locktime instruction that makes the output unspend-
able until the locktime has passed.
The value e → vlock. Recall that if 0 ≤ vlock < 500.000.000, then vlock is regarded
as a block height; if 500.000.000 ≤ vlock ≤ 4.294.967.295, then as a UNIX times-
tamp. Recall, that this opcode does not consume its operand. When the command is
compiled, the operand is therefore popped explicitly.

• checkSequence(e): Creates an instruction that prevents the output from being spend
until a relative time after the transaction was confirmed has passed.
The value e → vseq . The value vseq is either time-based or block-based depending on a
type bit set within the sequence number. Recall that this opcode does not consume its
operand. When the command is compiled, the operand is therefore popped explicitly
after the operation.

The compilation of the commands from above are shown below. The compilation for
declaring variables was already shown before, and is therefore not repeated.

[[check(l)]]f = [[l]]f OP_VERIFY
[[sendTo(e1, e2, e3)]]f = [[e1]]f [[e2]]f+1 OP_DUP OP_HASH160 [[e3]]

OP_EQUALVERIFY OP_CHECKSIGVERIFY
[[checkSig(e1, e2)]]f = [[e1]]f [[e2]]f+1 OP_CHECKSIGVERIFYf+2

[[checkMultisig(e1, . . . , eM ,

e′1, . . . , e
′
N)]]f

= OP_0 [[e1]]f+1 …[[eM]]f+M
<M>

[[e′1]]f+2+M
… [[e′N]]f+1+M+N

<N>
OP_CHECKMULTISIGVERIFY

[[checkLocktime(e)]]f = [[e]]f OP_CHECKLOCKTIMEVERIFY
OP_DROP

[[checkSequence(e)]]f = [[e]]f OP_CHECKSEQUENCEVERIFY
OP_DROP

Every compilation of a command or check function makes sure that it evaluates to true.

94 7. Variables and abstractions

This is simplydoneusing theopcodeOP_VERIFY.Take for example the functionsendTo(e1, e2, e3),
whichproduces aPay-To-PubKey-Hash instruction. Thefirst verificationusesOP_EQUALVERIFY
to check that the provided public key corresponds to the specified Bitcoin address. If instead
OP_EQUAL would have been used, then no matter the outcome of OP_EQUAL, the execution
would simply continue. In the final step, when a script program end, the top value of the stack
is checked if it is true. But this value could potentially only be returned by exactly one com-
mand. Therefore it is important that each command in a program is checked after its execution
by using OP_VERIFY, making sure it evaluates to true.

It may have raised some concern that in fact the compilation above exactly ignores that
a valid program must nevertheless also end with true left on the stack! This issue will be
addresses in the following, where the complete and final grammar of an output program is
defined.

To define the complete grammar, we will also need to consider the possibilities of making
different transaction types. Those transaction types were discussed previously. One such spe-
cial type is the Pay-To-Script-Hash from Section 6.1, which is recognized based on its Script
pattern. No other opcodes than the ones defined in its pattern are allowed to appear inside a
Pay-To-ScriptHash transaction. The NextScript command to produce this kind of transaction
is called sendToScript, and it will alsomark the end of the programproducing the redeem script,
which for the Pay-To-Script-Hash transaction.

It is also possible to use a transaction output solely to store small chunks of data, without
actually sending bitcoins. This is done with the opcode OP_RETURN. An output containing
OP_RETURN is unspendable due to rules defined by the Bitcoin protocol. This transaction type
should therefore only use the opcode OP_RETURN followed by the data to store. The program
command is called sendData.

A NextScript output program P is then defined in the following, where D contains the
input variables that must be declared prior to any other command inQ.

P := D; Q; OP_TRUE; sendToScript | sendData | D; Q; OP_TRUE

Before going into details with the commands of sendToScript and returnData, we dis-
cusswhy theopcodeOP_TRUE appears in the grammar at the endof a program. In the grammar
above,true is always pushedwith the last operation onto the stack, and therefore the top value

7.3. Programs 95

will always be true. The reason for this is exactly what was mentioned about the checks inQ.
By the construction of the commands in Q, every command is immediately checked to eval-
uate to true after its execution. If any one of them does not, then the transaction is instantly
marked as invalid and terminates. If a NextScript program therefore reaches to its end, it im-
plies that all checks during its execution must have passed without failure, and hence it is valid
and true should be pushed onto the stack to mark it as such.

The commands for sendToScript and returnData can be compiled as follows.

• returnData(e): Creates an OP_RETURN transaction.
This program will create a scriptPubKey that is unspendable. The data expressed in e is
allowed to be of at most 520 bytes due to the push limit, but should preferable be of at
most 80 bytes to comply with the “common practice” of using OP_RETURN.

• sendToScript: Creates a P2SH type of transaction.
The so-called redeem program that appears before sendToScript can be of at most 520
bytes of size when compiled to Script. The size limit follows from the technical circum-
stance, that the compiled redeem program must be pushed as a whole onto the stack
before being evaluated in Script, see 6.1. Its hash value is stored in scriptHash.

[[returnData(e)]]f = OP_RETURN [[e]]f

[[sendToScript]]f = OP_HASH160 <scriptHash>
OP_EQUAL

The input variables are simply defined by the following grammar, wherex denotes the vari-
able name that can be chosen freely. Recall that T denotes a type, which will be defined when
introducing the type system.

D := input x : T ; D | ϵ

Scope

Theif/else-clauses ofQneed somemore consideration. Asdecidingwhichbranchof an if/else-
clause will be executed depends on the actual input values, all variables declared within it must
be local to that clause, and may not be used outside of it. A restore process will therefore run
immediately after a clause was executed. The same variable function used when entering the

96 7. Variables and abstractions

if-clause can then also be used again when leaving the clause. Due to the restore process, all
pointers in the variable function will remain valid, both if the clause was executed or not. The
variable function can therefore be used oblivious about execution of an if- or if/else-clause.

The restore process is a sequence of commands generated by a function called restore,
which takes as input a variable function f . It will restore the pointers of the variable function
f , to the state before entering the clause, by rearranging the values on the stack. Recall that
there is no difference between declaring a variable and updating its value. The rearrangement
is therefore done in such a way, that the positions to the updated values are stored at the same
positionswhere the original valueswere, while the positions of unchanged values stay the same.

Technically, this rearrangement is done by using the simplest possible approach. The sim-
plicity of understanding the process is paid for by bloating the Script programwith a lot of push
opcodes. A discussion about optimization will follow at the end of this chapter in Section 7.6.

Recall that Script only has opcodes to copy values onto the top of the stack. The restore
process will therefore copy to the top of the stack the values all those variables that were in the
variable function f before entering the clause. This is done one-by-one in reversed order, so
that the rearrangement will contain the correct ordering when the process ends.

In otherwords, the variable that has the “largest” pointern in f will be simply copied to the
top. Assuming there is another variable with the next pointer n− 1, then its value is copied to
the top, otherwise a dummy value is pushed onto the stack. The process is continued likewise
for the next pointer n − 2, until reaching pointer 1. The stack will now contain the values to
the variables in exactly the same order andwith the same pointers as before entering the clause.
Copies of those values may still exist in some ordering at the bottom of the stack, but they will
simply be ignored in the continuance of the execution.

More formally, the process is defined as follows:

restore(f) =
1⊕

i=n

[[xi]] if ∃xi s.t. f−1(xi) = i

OP_0 otherwise

The symbol⊕ denotes a concatenation, and the value of n is the largest pointer in f .

The compilation of an if-clause is then:

7.3. Programs 97

[[if(l) {Q1 };Q]]f = [[l]]f

OP_IF [[Q1]]f restore(f)

OP_ENDIF
[[Q]]f

Similarly for an if/else-clause:
[[if(l) {Q1 } else {Q2 };Q]]f = [[l]]f

OP_IF [[Q1]]f restore(f)

OP_ELSE [[Q2]]f restore(f)

OP_ENDIF
[[Q]]f

Procedures

Procedures are implemented as macros. They are effectively just regarded as a piece of code
that when compiled will be substituted for every call of the procedure.

A procedure therefore does not directly “return” a value. Instead, parameters can be de-
fined which either contain values, or variable names to which values can be stored. Formally,
procedures are defined as follows:

D := {functionXi(x̄i) = Qi; }

Compiling a procedure then simply substitutes it with the compiled code. Assume there
is a call to a procedureX(ỹ) = Q1, then the compilation is:

X(ỹ) = Q1 ∈ D

[[functionX(ȳ); Q]]f = [[Q1[ȳ/x̄]; Q]]f

An example would be to define a procedure, calculating e.g. the median in any list of three
values and storing it in the variablem:� �
function median(m,x,y,z) =
var m=0;

if(y<x & x<z) {
var m = x;

} if(x<y & y<z) {
var m = y;

98 7. Variables and abstractions

} if(x<z & z<y) {
var m = z;

}� �
Listing 7.1: An example for a procedure.

Input programs

We will now look at how values can be declared for the input variables. This assignment of
values to input variables takes as mentioned place in input programs. An input program is
compiled to a scriptSig. Thename for an input program is somewhat of an overstatement, since
the only purpose of input programs is to provide values.

N := provide i; N | ϵ

The expression i could technically be any expression, as when declaring variables in the
output programs. But for the input programs it does actually notmake sense to provide expres-
sions that e.g. calculate the sum of two numbers. Input programs themselves, cannot receive
any inputs, or values, from outside. It is therefore easier and more efficient to instead just di-
rectly provide values such as a sum without calculations.

For that reason, it is better to restrict the expressions to values only. Furthermore, since a
program may execute conditionally depending on the value of an input variable, some values
can be ignored during the execution. For those cases NULL can be declared to an input variable.
This indicates that its valuewill notmatter for the specific input programprovided. Technically
though, instead of NULL any other value could be provided instead. We will see examples of
this in Chapter 8.

i := true | false | integer | “string“ | NULL

The input program is oblivious about the corresponding variable names it declares the val-
ues for. Which variable is assigned a value depends on the order in which those values are
declared in the input program. In the discussion at the end of this chapter we will look at how
an input program could easily be extended to allow the assignment of values directly to the
same variable names, which are used in the output program.

7.3. Programs 99

Execution rules for commands

We know present execution rules for NextScript. In actuality, a NextScript output program
will typically be compiled to a scriptPubKey, and this scriptPubKey will then be executed as a
Script program togetherwith a scriptSig, which could be a compiledNextScript input program.
The execution of the resulting Script program uses the rules of Script presented in Chapter 6.

But in the following, execution rules are presented forNextScript output programs, assum-
ing that an input program did provide the required values that may be used as expressions in
the commands. This is useful to show thatNextScript behaves as expected and in the sameway
as its compiled Script code.

Recall from thediscussion regarding the checks that commandswill either simply continue
execution, or terminate and mark the transaction as invalid if the check does not validate. We
will for the execution rules use a function σ, which is an assignment function that maps vari-
ables to their values. The only execution rule thatmaps values to theσ function is the one used
to declare variables and is presented below. The evaluation rules for expressions are denoted
as→σ .

e →σ v

σ, var x = e; Q → σ[x 7→ v] Q
E− VAR

The check command is executed as follows:

l →σ true

σ, check(l); Q → σ, Q
E− CHECK1

l →σ false

σ, check(l); Q → σ, invalid tx. E− CHECK0

For the following commands, we assume that expressions used as parameters to signatures
evaluate to signatures denoted as vsig , and similarly for public keys denoted vpub. The transac-
tion is marked as invalid if the signature is invalid, and hence not computed from the public
key or the transaction.

e1 →σ vsig e2 →σ vpub e3 →σ vpubH

vsig, vpub valid ∧ hash160(vpub) = vpubH

σ, sendTo(e1, e2, e3); Q → σ, Q
E− SENDTO1

100 7. Variables and abstractions

e1 →σ vsig e2 →σ vpub e3 →σ vpubH

vsig, vpub not valid ∨ hash160(vpub) ̸= vpubH

σ, sendTo(e1, e2, e3); Q → σ, invalid tx. E− SENDTO0

e1 →σ vsig e2 →σ vpub vsig, vpub valid
σ, checkSig(e1, e2); Q → σ, Q

E− CHECKSIG1

e1 →σ vsig e2 →σ vpub vsig, vpub not valid
σ, checkSig(e1, e2); Q → σ, invalid tx. E− CHECKSIG0

e1 →σ vsig1 · · · eM →σ vsigM

e′1 →σ vpub1 · · · e′N →σ vpubN

all vsig1, · · · , vsigM are valid

σ, checkMultiSig(e1, · · · , eM | e′1, · · · , e′N); Q → σ, Q
E− CHECKMULTISIG1

e1 →σ vsig1 · · · eM →σ vsigM

e′1 →σ vpub1 · · · e′N →σ vpubN

at least one of vsig1, · · · , vsigM is invalid

σ, checkMultiSig(e1, · · · , eM | e′1, · · · , e′N); Q → σ, invalid tx. E− CHECKMULTISIG0

For the commands checkLocktime and checkSequence, the expression they take as
parameters must evaluate to a value for locktime vlock or sequence vseq , respectively. If the
actual locktime of the transaction, or sequence to the input, is of at least this value, and of the
same type, then the commands are executed without failure. Otherwise, the transaction is
marked as invalid.

e →σ vtime vtime is valid
σ, checkLocktime(e); Q → σ, Q

E− CHECKLOCKTIME1

e →σ vtime vtime is not valid
σ, checkLocktime(e); Q → σ, invalid tx. E− CHECKLOCKTIME0

e →σ vseq vseq is valid
σ, checkSequence(e); Q → σ, Q

E− CHECKSEQUENCE1

7.4. Type system 101

e →σ vseq vseq is not valid
σ, checkSequence(e); Q → σ, invalid tx.

E− CHECKSEQUENCE0

The rules for the if and if/else clauses are straightforward.

l →σ true

σ, if(l) {Q1}; Q → σ, Q1; Q
E− IF1

l →σ false

σ, if(l) {Q1}; Q → σ, Q
E− IF0

l →σ true

σ, if(l) {Q1} else {Q2}; Q → σ, Q1; Q
E− IFELSE1

l →σ false

σ, if(l) {Q1} else {Q2}; Q → σ, Q2; Q
E− IFELSE0

7.4 Type system

Asalreadymentioned, Script treats every value ashexdata. ThereforeScript cannot knowwhen
accessing a value, if it should be treated as an integer, a locktime or a public key. One ofmany is-
sues this can cause is that of writing a program that accidentally treats a hash value as an integer,
in the worst case causing a buffer overflow.

A type system contains a collection of rules to assign types to variables, expressions and
commands. By examining the flow of a program, a type system can ensure that no type errors
will occur. A type error could for example happen when comparing string data with numeric
values, or performing arithmetic operations on strings. Type errors also include other opera-
tions that would not make sense, such as using a hash value as parameter for a command that
expects a signature.

The type system therefore adds “meanings” to values andmakes sure that the different parts
of programs connects those values in a consistent way with regard to that underlying meaning.

The type system for NextScript uses a type environment Γ, and the “comma” operator,
which extendsΓ by adding a new binding on the right.¹ The empty context is denoted without
a symbol, and it will be clear from the notation when being used.

The typing judgements for expressions are written as “Γ ⊢ e : T ” and “Γ ⊢ l : T ”. Typing

¹All variables declared with “let x = e” are distinct.

102 7. Variables and abstractions

rules are defined by a set of inference rules assigning types to expressions. The typing relation
is therefore the smallest ternary relation between contexts, expressions and types satisfying all
instances of the rules. An expression e, or l, is well typed if there exist some Γ, T such that
Γ ⊢ e : T , or Γ ⊢ l : T . Types assigned to expressions in output programs can be any of the
following:

T ::= Bool | Integer | Pubkey | String | Locktime | Sequence

Note that there is no type for a “signature” in T . A signature should never be provided in
the output program itself. It should instead be provided by an input program. Therefore the
input variables in output programs can have the following types:

Tin ::= Bool | Integer | Pubkey | String | Signature

As can be seen from the definition of Tin, Locktime and Sequence should not be pro-
vided as input variables. The reason is that the spender of a transaction can anyways just set the
locktime or sequence of his spending transaction to some desired value. There is no need to
make an output program additionally check that some value the spender provides corresponds
to the locktime or sequence of the transaction that the spender also already provides himself.

Pubkey and Signature are exactly like String. This distinction is a safety mechanism
to prevent e.g. the accidental use of a hash value as a public key, for which no signature to un-
lock funds can possibly be provided. Locktime, on the other hand, is not exactly the same as
Integer. The reason is thatwhereas arithmetic operations are limited to 4 byte signed integers,
the locktime is represented as a 4 byte unsigned integer. Similarly for Sequence, but using a
smaller range.

Typing rules for expressions

The typing rules for expressions in output programs are presented in the following. We begin
by defining types for integers and Booleans:

Γ ⊢ 0 : Integer
T− 0

and likewise for all 4 byte signed integers.

Γ ⊢ true : Bool
T− TRUE

7.4. Type system 103

Γ ⊢ false : Bool
T− FALSE

Likewise,Locktime can be defined as

Γ ⊢ 0 : Locktime
T− L0

and likewise for all 4 byte unsigned integers.
Recall that the sequence number can be of two types, one which denotes a block number,

and another which denotes a timespan in 512 seconds granularity, hence e.g. 10 = 5120

seconds. The type Sequence will only be considered of the type where it denotes a block
number, and therefore its additional notion of a timespan in 512 seconds granularity is omitted.

Γ ⊢ 0 : Sequence
T− S0

up to the number 65.535, which is the maximum allowed sequence number and corre-
sponds to roughly one year of a relative locktime.

String is simply assigned to each subexpression h, hence

Γ ⊢ h : String
T− STRING

Γ ⊢ h : Pubkey
T− PUBKEY

Typing rules for expressions will be defined in the following, and are self explicable.

Γ ⊢ h : String

Γ ⊢ ∥h∥ : Integer
T− SIZE

Γ ⊢ e1 : Integer Γ ⊢ e2 : Integer

Γ ⊢ e1 + e2 : Integer
T− SUM

Γ ⊢ e1 : Integer Γ ⊢ e2 : Integer

Γ ⊢ e1 − e2 : Integer
T−DIFFERENCE

Γ ⊢ e : Integer

Γ ⊢ |e| : Integer T− ABS

104 7. Variables and abstractions

Γ ⊢ e : Integer

Γ ⊢ e++ : Integer
T− INC

Γ ⊢ e : Integer

Γ ⊢ e−− : Integer
T−DEC

Γ ⊢ e1 : Integer Γ ⊢ e2 : Integer

Γ ⊢ min(e1, e2) : Integer
T−MIN

Γ ⊢ e1 : Integer Γ ⊢ e2 : Integer

Γ ⊢ max(e1, e2) : Integer
T−MAX

For the logical expressions, some of the typing rules must be divided to make sure that ex-
pressionsof the same types are compared. The types to consider areT ′ ::= Bool | Integer |String.

Γ ⊢ e1 : T
′ Γ ⊢ e2 : T

′

Γ ⊢ e1 == e2 : Bool
T− EQUAL

Γ ⊢ e1 : T
′ Γ ⊢ e2 : T

′

Γ ⊢ e1! = e2 : Bool
T− NOTEQUAL

Γ ⊢ e1 : Integer Γ ⊢ e2 : Integer

Γ ⊢ e1 < e2 : Bool
T− LESS

Γ ⊢ e1 : Integer Γ ⊢ e2 : Integer

Γ ⊢ e1 > e2 : Bool
T−GREATER

Γ ⊢ e1 : Integer Γ ⊢ e2 : Integer

Γ ⊢ e1 <= e2 : Bool
T− LESSEQUAL

Γ ⊢ e1 : Integer Γ ⊢ e2 : Integer

Γ ⊢ e1 >= e2 : Bool
T−GREATEREQUAL

Γ ⊢ e : Bool
Γ ⊢!e : Bool

T− NOT

7.4. Type system 105

Γ ⊢ e1 : Bool Γ ⊢ e2 : Bool
Γ ⊢ e1&e2 : Bool

T− AND

Γ ⊢ e1 : Bool Γ ⊢ e2 : Bool

Γ ⊢ e1∥e2 : Bool
T−OR

Γ ⊢ e1 : Integer Γ ⊢ e2 : Integer Γ ⊢ e3
Γ ⊢ within(e1, e2, e3) : Bool

T−WITHIN

Variables and commands

Commands in output programsmay take as parameters an expression e or l of types defined in
T . The types can thereforebePubkey,String, Integer,Boolean,Locktime andSequence.

When declaring a variable, it inherits the type of the expression it is assigned to:

Γ ⊢ e : T Γ, x : T ⊢ Q

Γ ⊢ let x = e;Q
T− VARE

Γ ⊢ l : T Γ, x : T ⊢ Q

Γ ⊢ let x = l;Q
T− VARL

Programs are not assigned to a type. But they are considered well typed if all of their pa-
rameters are well typed. The typing rules of programs are presented in the following.

Γ ⊢ l : Bool Γ ⊢ Q

Γ ⊢ check(l);Q
T− CHECK

Γ ⊢ e1 : Signature Γ ⊢ e2 : Pubkey Γ ⊢ e3 : String Γ ⊢ Q

Γ ⊢ sendTo(e1, e2, e3);Q
T− SENDTO

Γ ⊢ e1 : Signature Γ ⊢ e2 : Pubkey Γ ⊢ Q

Γ ⊢ checkSig(e1, e2);Q
T− CHECKSIG

106 7. Variables and abstractions

Γ ⊢ e1 : Signature · · · Γ ⊢ eM : Signature

Γ ⊢ e′1 : Pubkey · · · Γ ⊢ e′N : Pubkey
Γ ⊢ Q

Γ ⊢ checkMultiSig(e1, · · · , eM | e′1, · · · , e′N);Q
T− CHECKMULTISIG

Γ ⊢ e : Locktime Γ ⊢ Q

Γ ⊢ checkLocktime(e);Q
T− CHECKLOCKTIME

Γ ⊢ e : Sequence Γ ⊢ Q

Γ ⊢ checkSequence(e);Q
T− CHECKSEQUENCE

Γ ⊢ l : Bool Γ ⊢ Q1 Γ ⊢ Q

Γ ⊢ if(l) {Q1 }; Q
T− IF

Γ ⊢ l : Bool Γ ⊢ Q1 Γ ⊢ Q2 Γ ⊢ Q

Γ ⊢ if(l) {Q1 } else {Q2 }; Q
T− IFELSE

Connecting input and output programs

Let us now return to the notion of input and output programs, how they are interconnected,
and how the types of declaring input variables and providing values to them can be defined to
match each other.

For the output programswewill add a layer that distinguishes between the part containing
the scriptSig denoted D and the part containing the scriptPubKey denoted Q. For the latter
we have that

Γ ⊢ Q

Γ ⊢ Q : ∗

where ∗ denotes thatQ runs.
When combined with the input variables, the whole output program consists of a concate-

nation of variable declarations typed by

Γ, x : Tin ⊢ P : T

Γ ⊢ input x : Tin;P : Tin → T

7.5. Theoretical results 107

We can define the type of input programs with a similar concatenation. The empty input
program is trivially typable.

Γ ⊢ ϵ : ⊤

If the input program provides values, then their types can be concatenated:

Γ ⊢ i : Tin Γ ⊢ I : T
Γ ⊢ provide i; I : Tin ∧ T

Finally, the following lemma states that if an input program provides values of the same
types as the output program declares in its input variables, then the program obtained by con-
necting them is well typed.

Wewill defineP [I/D] as theprogramdefinedby substituting the input variables ofD inside
programP with all of the provide commands in I .

Lemma. If ⊢ I : T1 ∧ · · · ∧ Tn and ⊢ P : T1 → · · · → Tn → ∗, then ⊢ P [I/D] : ∗

Proof. By induction on I and P .
Base case:
I : ∗ and P : ∗. Then since there is noD in P , it follows immediately that P [I/D] = P : ∗.
Inductive step:
Assuming it holds for I : T1 ∧ · · · ∧ Tn and P = D;Q, where P : T1 → · · · → Tn. If
P ′ = D′;Q′, whereP ′ : T1 → · · · → Tn+1 and I ′ : T1 ∧ · · · ∧ Tn+1, then

⊢ P ′[I/D] : Tn

P ′[I/D] : Tn ⊢ P ′[I′/D′] : Tn+1 → ∗

7.5 Theoretical results

In the following two important theoretical results regarding NextScript will be discussed. The
first regards the type safety, which prevents erroneous programs. The second regards the com-
piler, and will be discussed afterwards.

108 7. Variables and abstractions

Safety property

The safety property guarantees that a well typed program does not “go wrong”, meaning it will
never reach a stuck state that is not the end of the program, but from which also no further
execution is defined.

To prove that the safety property holds true for NextScript, it suffices to prove two other
properties in combination:

• Progress: Awell typed command is not stuck. In otherwords, it can take a step according
to evaluation rules.

• Preservation: If a well typed command takes a step of evaluation, then the resulting state
of the program is also well typed.

For the properties to be described mathematically, we will define what it means for the
assignment function σ to be well typed.

∀x ∈ dom(σ) Γ ⊢ σ(x) : Γ(x)

Γ ⊢ σ

whereΓ(x) is a function that returns the type of the variable x assigned in the environmentΓ.

Property. Progress: Assume Q is well typed, so Γ ⊢ Q and Γ ⊢ σ. Then either Q = ϵ, and we
are done. Otherwise, it must be shown that for all possible assignments of σ in whichQ is well typed,
Q can make an execution step. Therefore,
∀σ : Γ ⊢ σ σ,Q → σ′, Q′

Proof. The proof is only sketched. Progress can be shown by induction on the cases for the
execution rules. The only part that may not be directly clear is that some assignments of σ
and Q can exist, which assign types that are required for the later evolution of Q to be well
typed.

Property. Preservation: Assume Q is well typed and can take an execution step. Hence, Γ ⊢
σ, Γ ⊢ Q and σ, Q → σ′Q′.
Then the resulting state is also well typed, hence
Γ′ ⊢ σ′, Γ′ ⊢ Q′

7.6. Optimisations 109

Proof. The proof is only sketched. Preservation can again be shown by induction on the cases
for execution rules. The only part that requires checking is that the resulting σ′ is well typed.

Soundness of the compiler

The soundness of the compiler regards the compilation of NextScript to Script. This property
is useful, as it guarantees that both NextScript and Script behave similarly, that is, all possible
behaviours are preserved, and no behaviour is added by NextScript. The compiled Script pro-
gram therefore behaves according to the semantics of NextScript.

Property. Soundness: If σ, Q → σ′, Q′ and f respects σ, then [[Q]]f → [[Q′]]f ′ for some f ′

that respects σ′.
By “f respects σ” we mean that for all variables x, its value assigned in σ is stored at the position
f(x) on the value stack, and vice versa for σ′ and f ′.

7.6 Optimisations

There are a number of possible ways to optimize the compiler. As mentioned earlier, the com-
piler can be considered optimal if the Script code it compiles to is as small in size as possible,
hence uses as few opcodes and data pushes as possible.

The reason for this, is that a transaction fee in Bitcoin is typically paid for depending on its
size. Currently a block is limited to not exceed 1 megabyte. The choice miners have of adding
valid transactions into a newblock therefore corresponds to aKnapsackProblem. Transactions
paying the highest fee/size ratio will typically be included in a new block most rapidly.

But to give a guarantee of optimal compiled Script code size is out of reach for this the-
sis. In this section I will discuss and present improvements to the compiler, which generate
Script code that will at least be smaller in specific situations. Although it adds complexity to
the compiler, some of them are worth the consideration, and this section will end with a short
discussion regarding this.

Optimizing the if/else statements

Improvements that need consideration regards the restore procedure after an if/else statement
is executed. Recall, that the variable function used before entering a clause will also be used

110 7. Variables and abstractions

after execution of a statement, by making sure that the positions of values in the stack are re-
stored.

But instead of restoring to the initial state, it suffices to make sure that oblivious of the
execution of a clause, the variable function is the same, but possibly different from the initial
one. This allows to use less copy operations, which the restore procedure performs on each of
the variables.

Since there are a lot of points to consider, I will only briefly describe an alternative to the
restore process, which will be called the cleaning process. If the cleaning is called after a simple
if-clause that only declares local variables within its scope, then in fact popping all those values
from the stack and returning to the initial variable function is still the most efficient approach.

Should the if-clause update a value of a variable outside the scope, then all the local vari-
ables that are declared after the last non-local variable was updated should be popped. By using
the opcode OP_NIP one-by-one to pop each second-to-top element, this is then also possible
for local variables that are directly preceding the last non-local one. An else branch could be
introduced, which only copies the original values of updated variables onto the stack, and if
necessary pushes dummy values before and after those copies that correspond to the local vari-
ables that were not popped from the if -branch.

Although, things canbecomemore complicated if there arenested if-clauses involved. Then
even popping the values of local variables that are further below in the stack could produce a
smaller code, if otherwise all the corresponding else brancheswould each have to push dummy
values.

If there are if/else statements involved, then to continue execution with the same variable
function independently on which branch was executed the cleaning process must make sure
that the branch with the fewest local variables pushes a corresponding number of dummy val-
ues. Those dummy values should simply be pushed to respect the order at which they appear
as local variables in the other branch. Updates made to variables outside of the scope should
be taken care of by copying the original value onto the top in the alternative branch, just as for
the else statement that was introduced for the sole if statement.

Optimization of variables

There are two things than can be done to slightly optimize the compilation of variables, but
I would consider the benefit of doing so limited. This should however be considered if one

7.6. Optimisations 111

wishes that the compiled code to standard transaction types is optimal.
I will therefore informally just outline the idea. Specific push opcodes exist that can dupli-

cate up to three values that are on the top, with a single opcode. Many commands need more
than one input in form of e.g. variables. As it stands now, each variable is independently of the
others compiled, such that the values are copied one-by-one onto the top of the stack.

If instead the variables were already in the order expected by some command, then they
may be copied to the top together using a single opcode as described above. This however
requires that the variables were already positioned at the top.

Furthermore, many Script programs are fairly small and simple. For the compiler to pro-
duce Script code of standard transaction types that is optimal, the provided variables that will
not be used again should be directly consumed by the command. It may be possible to formal-
ize a general rule, which allows variables to be consumed if it is decidable that they will not be
used again afterwards. But this behaviour mostly benefits small programs and is therefore not
further considered.

Optimization of input programs

An optimization can also be achieved by the order in which input variables are provided. This
can be done in two places. First of all, output programs may be able to use fewer of the large
copy opcodes <n> OP_PICK, if the most frequently used input variable would be initially
provided at the top of the stack. Then simply using OP_DUP would suffice.

Furthermore, if we extend the discussion frombefore regarding the ability to consume vari-
ables that will not be used afterwards, then the values may be directly provided in the order in
which they will be consumed by commands. This would require the compiler to analyze the
output programanddetermine thebest orderof declaring variables, whichmaybedifficult. But
the compiler could simply check for all possible ways of declaring input variables and choose
the one that produces the smallest compiled code. All possible orderings of input variables is
the factorial of the number of input variables, and hence grows exponentially. The question
remains open if this optimization is important enough for that.

Optimizing command calls

The last optimization I want to mention is in regard to patterns in which commands are called.
I will show a program that uses checkMultiSig. I don’t have any suggestion regarding a way

112 7. Variables and abstractions

to optimize the compiler to this regard, but to complete this section I nevertheless want to
mention it.� �
input option;
input sig1;
input sig2;
input sig3;

if(option) {
checkMultiSig(sig1, sig2, sig3 | "pubA", "pubB", "pubC");

} else {
checkLocktime("now+3days");
checkMultiSig(sig1, sig2 | "pubA", "pubB", "pubC");

}� �
Listing 7.2: An output program whose compilation could be optimized.

Theprogram is shown in Listing 7.2. The compiled code calls OP_CHECKMULTISIG twice,
and pushes the public keys “pubA”, “pubB” and “pubC” twice, each of which is 30 bytes. But a
Script code exists, which has the same functionality but is smaller.

The scriptPubKey that would be optimal is:
OP_IF OP_3
OP_ELSE OP_2
OP_ENDIF
<pubA> <pubB> <pubC> OP_3 OP_CHECKMULTISIG

So instead of pushing OP_CHECKMULTISIG together with the public keys twice, it suffices
to simply decide if two or three signatures are required inside the if/else statement and spec-
ify the publkic keys outside the statement. This is a very specific examples, but more similar
constructions can be made and it is possible to save on a lot of data pushes that way.

The importance of optimization

How important is optimization? This is a difficult question to answer. Bitcoin is still new and a
lot can andwill change. The transaction fee of a typical transaction of 300 bytes currently costs
around 5 cents. Therefore getting rid of a single 1-byte opcode does not mean a lot. But saving
a single push of a pubkey decreases the transaction size with around 10%. If programs were

7.6. Optimisations 113

to become more complex, then potentially a lot could be improved regarding their sizes. The
question is if transaction fees will stay low? Nobody knows. They could increase substantially
in the future due to the limited size of blocks, which will be discussed in Chapter 8.

To conclude this section, I will draw parallels to the development of computer games. This
may seem far away from Bitcoin, but I nevertheless believe they may share a common baseline
regarding optimization in the beginning of new technologies. The first computer games were
highly optimized. They were either completely written in Assembler or the compiled C code
was optimized in Assembler. This allowed the development of games during the 1980s, which
considering how little memory and computing there was available for that time, were very ad-
vanced. Nowadays memory and computation have become so big or fast, that optimization in
this area does not matter as much anymore. I believe this could be the same path Bitcoin will
take. I think in the short term, if more complex programs will arise in Bitcoin, then optimiza-
tion will matter a lot. But optimization could slowly become less relevant in the future due
to e.g. improvements on the bandwidth and possibilities of storage of the Blockchain. There
are already a lot of improvements proposed for the Bitcoin protocol, and applications are de-
veloped that add another layer to steer around its limitations, which will be discussed in the
following chapters.

Bitcoin is a technological tour-de-force.

Bill Gates

8
Applications and implementations

The transaction structure of Bitcoin was discussed in Chapter 4, and a formal model
was presented in Chapter 6. In this chapter we will look at how the model can be combined
with the language of NextScript presented in Chapter 7, to allow for complex transaction pro-
grams, used in different applications. Code examples of NextScript are presented to show how
applications could be actually programmed.

Although a lot of applications can be made solely from the viewpoint of input and output
programs, we need to consider the whole transaction structure in applications that make use
of the different possible ways in which some programs can be validated.

The theoretical work regarding a formal model for the transaction structure has already
been done, but time did not permit to also develop a practical framework that implements
the model. Further investigation would therefore be required to make a platform, which can
be used to implement complex transaction structures, as the ones presented in this chapter.
But for the input and output programs, NextScript is used in all of the examples. The transac-
tion structures aremathematically described using the formalmodel. It may be surprising how

116 8. Applications and implementations

many complex constructions are possible with Bitcoin transactions, all of which Script is an
important building block for.

When considering the transaction structure, the signature types become more important.
For Script andNextScript, the difference between signature types does notmatter. They simply
check, if a provided signature is valid or not. There is no change in the execution depending on
the signature types. But those signature types define how to construct a transaction in the first
place.

The first examples in this chapter will show how the compiled Script code of a NextScript
program will look like. But later examples, which also make use of the transaction structure
to implement complex transactions, will only show theNextScript programs without the com-
piled Script code.

At the timeof thiswriting, someof the later presented examples probably define the cutting
edge of what the future might bring into the space, and demonstrate how flexible the scripting
language is. It is our believe that NextScript makes it much easier to keep track of the process
within a script and can improve the difficulty of programming such.

8.1 Basic examples

Thefollowingexamples showa fewsimpleoutputprogramsused inmany standard transactions
today. They should give a feeling for the programming language NextScript.

Pay-To-PubKey

The NextScript for a Pay-To-PubKey output can be considered the equivalence of a “Hello
World” program. It is the most basic but still useful transaction type in Bitcoin, and is even
of traditional value since the name for scriptSig and scriptPubKey roots in this type of transac-
tion, see Section 6.1.

A Pay-To-PubKey can be programmed with the public keys directly specified as parameter
for the checkSig command, see Listing 8.1.� �
input sig:Signature;

checkSig(sig, "pubKey");� �
Listing 8.1: A Pay-To-PubKey program.

8.1. Basic examples 117

As defined by the grammar, the opcode OP_TRUE is added to the end of the programwhen
compiled. The compiled code is the following scriptPubKey.

[[input sig : Signature]] ∅
[[checkSig(sig, “pubKey“)]] OP_DUP

<pubKey>
OP_CHECKSIGVERIFY
OP_TRUE

This compiled scriptPubKey is slightly different from the Script code typically used as a
Pay-To-PubKey. First of all, the value for the variable sig is first duplicated using OP_DUP. Fur-
thermore, NextScript always uses the verify-type of opcodes where applicable, In the typical
scriptPubKey instead OP_CHECKSIG is used, since it is the last check in the program. Finally
the script ends with OP_TRUE, which could be omitted if OP_CHECKSIG would have been
used instead. These are just minor differences, and many of which could be improved by opti-
mizations discussed in Section 7.6. The differences are only in the opcodes, they of course do
not change the behaviour of the script. Further discussion between the differences of the com-
piled code and how typically standard transactions are programmed is omitted in the following
examples.

ANextScript input program, which validates the output program from above, must simply
provide the signature:� �
provide "signature";� �

Listing 8.2: An input program for a Pay-To-PubKey.

Pay-To-PubKey-Hash

Nowwe will look at the most typical Bitcoin transaction being currently used. It is the Pay-To-
PubKey-Hash that has been discussed in numerous occasions.� �
input sig:Signature;
input pub:Pubkey;

sendTo(sig, pub, "pubKeyHash");� �
Listing 8.3: A Pay-To-PubKeyHash program.

118 8. Applications and implementations

The compiled code is the following scriptPubKey.

[[input sig : Signature]] ∅
[[input pub : Pubkey]] ∅
[[sendTo(sig, pub, “pubKeyHash“)]] OP_OVER

OP_OVER
OP_DUP
OP_HASH160
<pubKeyHash>
OP_EQUALVERIFY
OP_CHECKSIGVERIFY
OP_TRUE

A NextScript input program that validates this output program must simply provide the
signature and public key:� �
provide "signature";
provide "pubKey";� �

Listing 8.4: An input program for a Pay-To-PubKeyHash.

Zero-Knowledge Contingent Payment

A Zero-Knowledge Contingent Payment is a fancy name for a transaction type which resem-
bles the hash-puzzle transaction we saw in Chapter 6. This transaction makes it possible to e.g.
sell hash preimages in a secure manner, which means that if and only if the preimage is pub-
lished will the transaction take place. An application to this is presented below, but will also be
useful in regard to other applications discussed later.

A zero-knowledge proof (ZKP) for general computation is a cryptographic system which
lets a person run an arbitrary program with a mixture of public and secret inputs and prove to
others that this specific program accepted the inputs, without revealing anything more about
its operation or the secret inputs.

Because these efficient ZKPs are cutting-edge technology, which depend on new strong
cryptographic assumptions, their security is not settled yet. But in applications like ZKCP they
are the only alternatives to third-party trust.

8.1. Basic examples 119

This field is a new research topic of itself, and out of scope for this thesis. Therefore no
further details will be discussed about how they work. But accepting such a zero-knowledge
proof system as a black box, the rest can be explained in simple terms.

Let’s assume a buyer wants to buy a solution to a difficult problem, and finds a seller to
that information. It could for example be a solution to a Travelling Salesman Problem. Then
the buyer would perform a trusted setup for the zero-knowledge proof system and send the
resulting setup information to the seller. The seller would pick a random encryption key y and
encrypt the information the buyer wants to buy. Using the ZKP system the seller can construct
a proof, which proves that

• E is an encryption of a solution to the buyer’s problem.

• Y is the SHA-256 hash of the decryption key y forE.

The seller then sends E, Y , the proof and his public key pubSeller to the buyer. The buyer
can then verify the proof and conclude that if he learns the input to the SHA-256 function that
yields Y , then he can decrypt the solution.

In other words, the buyer now only needs to buy the input y to the hash function, yields
Y . There is a way to do that in Bitcoin! The buyer can create a payment to the output program
shown in Listing 8.5.� �

input sigBuyer:Signature;
input sigSeller:Signature;
input y:String;

if(sha256(y)=="Y") {
checkSig(sigSeller , "pubSeller");

} else {
checkSequence(430);
checkSig(sigBuyer , "pubBuyer");

}� �
Listing 8.5: An output program for a Zero-Knowledge Contigent Payment.

Either the seller collects the payment by providing his signature sigSeller and y, which
is the hash preimage of Y and what the buyer wants. Or, to avoid tying up the buyer’s funds
forever, if the seller does not collect the payment within some specified time, then the buyer

120 8. Applications and implementations

can reclaim the payment after that. For the example we used checkSequence with a relative
locktime of 430 blocks, which roughly corresponds to three days. When the seller collects his
payment, he is in other words forced to reveal the information y that the buyer needs in order
to decrypt the answer.

8.2 Programmable transaction chains

Recall fromChapter 5 the notion of confirmation of transactions. A transaction is confirmed, if
it is added to the blockchain. Before that happens, it could still be potentially double spent. An
output is always completely spent by exactly one input of some spending transaction. But be-
fore confirmation in the blockchain, it is possible to create “potential” branches in the structure
of a transaction chain, such that there could be different paths spending from an output. Ulti-
mately the blockchain would only validate and contain one such path, regarding all the other
paths as invalid double spend attempts.

In the following examples, recall that the structure of a transaction t = (Ĩ , Õ, l), with any
number of inputs Ĩ ∋ Ii = (hi, ni, Si, seqi) and outputs Õ ∋ Oj = (Pj, vj). The values
hi and ni denote the transaction hash and index of some output being spend with input Ii, Si

is the scriptSig, and seqi is the sequence number. Oj is the j-th output, and Pj and vj is the
scriptPubKey and amount.

Micropayment channel

Complex constructions are possible by controllingwhich transactions can be chained together.
One example is a so called micropayment channel. Sending a lot of transactions of only small
amounts become very costly, see Figure 8.2.1. Transactions sending tiny amounts of bitcoins
are also calledmicropayments, ormicrotransactions, and themotivation behind amicropayment
channel is exactly to prevent from paying a lot of fees for them.

It is possible to construct an output from which potentially a lot of micropayments can be
sent without paying a lot of fees. This is similar to a contract. When the contract terminates,
a transaction that contains the right amount of balances will be signed and broadcasted to the
network, andfinally be confirmedby theblockchain. Only the fee of that last transactionwould
be necessary to pay, instead of for each single microtransaction.

The definition of a channel is rather broad and unspecific. But in the following we will

8.2. Programmable transaction chains 121

Figure 8.2.1: Schematic illustration of many micropayments. The last one is an aggrega-
tion of them all.

always refer to a channel as an output program that locks in an amount of bitcoins, whose func-
tion is to later send them to some other party, but without immediately settling the payment
transactions on the blockchain. There will be intermediary states until reaching the final state
triggered by the closing of the channel, which will settle the correct balances. Those interme-
diary states will only be known to the parties involved with the channel, while the Bitcoin net-
work is oblivious about them and only knows about the final settlement transaction.

Funding transaction

Alice wants to open a channel with Bob. Within this channel she should be able to send a lot
of micropayments to him. If Bob is uncooperative, she wants all of her money back after some
beforehand agreed upon time, e.g. three days. This hook is Alice’s security that if Bob simply
disappears, her funds will not become potentially locked up forever in the channel.

A transaction that locks in someamountv in anoutput containing theprogramPfund, could
be setup as follows. The transaction is denoted as tfund = (Ĩ , O, 0), where Ĩ are some inputs
from Alice. The outputO = (Pfund, v) contains the NextScript program Pfund shown in List-
ing 8.6.

Let us assume that Alice creates a funding transaction tfund, which is funded by e.g. 0.1
bitcoins by the input Ĩ . In general, Alice would choose to lock in an amount, which she sup-

122 8. Applications and implementations� �
input sigA:Signature;
input sigB:Signature;
input option:Boolean;

if(option){
checkMultiSig(sigA, sigB, "pubKeyA", "pubKeyB");
} else {
checkLocktime("now+3days");
checkSig(sigA, "pubKeyA");
}� �
Listing 8.6: Pfund: The program for opening a micropayment channel. A denotes Alice
and B denotes Bob. “now + 3days” inside checkLocktime is simply used symbolically
and should in actuality denote some absolut block height.

poses exceeds the total amount of micropayments she will send to Bob. But if necessary, she
can always open a new channel to lock in additional funds. Before proceeding, she would have
to broadcast this transaction to the Bitcoin network and have it confirm inside the blockchain.
This would function as opening the channel. Only then can Bob accept the micropayments in
a trust less matter, without the need to have them included into the blockchain immediately.
How such micropayments could be constructed in detail will be regarded later.

Refund transaction

Let us first see how Alice could get her money back if Bob becomes uncooperative. In the
output programPfund, the function checkLocktimehas theparameter “now+3days”. This is
only used symbolically, and should actually contain the current block height of the blockchain
with 430 blocks added to it. Since each block takes on average 10 minutes to mined, adding
430 blocks to the current blockchain height corresponds to an expected time of three days.
During those three days, the channel would stay active, and Alice can by spending from this
channel output continuously constructnewpayment transactions toBob. In caseBobbecomes
uncooperative, Alice canwait for a total of three days to pass and get all of hermoney back from
a refund transaction, whose locktime would be set to at least the value specified in the output
programPfund. The refund transaction is trefund = (IA, O1, “now+3days“), where the input
IA = (hfund, 0, Srefund, 0) spends the single output from tfund. The NextScript input program
Srefund would have to provide her signature with the ”option” value set to false, so that ”her”

8.2. Programmable transaction chains 123� �
provide "<Alice 's signature >";
provide NULL;
provide false;� �
Listing 8.7: Srefund: The input program that refunds Alice. Note that if the last value
corresponding to the option is set to true, then the value NULL should instead contain
Bob’s signature.

� �
input sig:Signature;
input pub:Pubkey;
var pubHash = "Bob's address";
sendTo(sig, pub, pubHash);� �
Listing 8.8: P1 simply sends the money to Bob’s address. Similarly for P2 but using
Alice’s address instead.

branch of the output program is executed. See Listing 8.7. The outputO1 would typically just
send the money to Alice’s Bitcoin address.

Payment transactions

With the security setup in place, let us now see howAlice within this channel actually can send
e.g. 0.001 bitcoins to Bob. She creates a payment transaction tpay1 that contains two outputs
O1 andO2. One of them must send 0.001 bitcoins to Bob’s address, and the other one returns
the rest of 0.098 bitcoins to herself. The difference in the amounts between the two outputs
is 0.001 bitcoins and corresponds to the transaction fee. With the input Ifund, Alice spends
from the channel. Whereas in the refund transaction Alice did provide a locktime to allow
her to spend from the input without the need of Bob’s signature, the locktime for the payment
transaction is simply deactived by setting the value to 0. She can therefore not provide a valid
input program, as it would need both hers and Bob’s signature. Formally she constructs a pay-
ment transaction tpay1 = (IAB, Õ, 0), where IAB = (hfund, 0, ∅, 0), and Õ = (O1, O2) with
O1 = (P1, 0.001) andO2 = (P2, 0.098). The NextScript output programs P1 and P2 must
simply send the bitcoins to Alice and Bob. More importantly, note that the input program to
IAB at this point is empty. Alice signs this transaction structure tpay1 and gives both the struc-
ture and her generated signature to Bob. See Figure 8.2.2 for a schematic representation of the
micropayment channel.

124 8. Applications and implementations

Figure 8.2.2: Showing the construction of a micropayment channel. On the right are
payment transactions to Bob shown. On the left is the refund transaction that Alice can
use after three days to refund her money if Bob should become uncooperative.

Bob could now also sign the payment transaction tpay1, and could provide a valid input
script from his and Alice’s signature. But for now he will just keep the transaction as a secu-
rity, knowing with certainty that during the next three days, at any time of his liking, he can
broadcast tpay1 to receive the micropayment.

Payment transactions represent the balance of funds between Alice and Bob within the
channel. A payment transaction is therefore not an additional payment per se, but instead in-
corporates also all previous paymentsmade in this channel. If Alice nowwants to send another
micropayment to Bob, she would produce a new partially signed payment transaction tpay2 in
nearly the same way as before and give it to Bob. But it should contain the total aggregated
amount that Alice is sending to Bob within this channel. If Alice wants to send an additional
0.001bitcoins toBob, shewould create a transaction that again spends from the funding output
in tfund as before, but this time sends 0.002 bitcoins to Bob and the rest of 0.097 bitcoins to her-
self, minus a transaction fee of 0.001 bitcoins. So, tpay2 = (IAB, Õ′, 0)with IAB spending from

8.2. Programmable transaction chains 125

tfund as before and Õ′ = (O′
1, O

′
2) where O′

1 = (P1, 0.002) and O′
2 = (P2, 0.097). Since

Bob would again be in possession of both signatures for this transaction, he can now provide
valid input scripts to both transactions tpay1 and tpay2 C1a and C1b, respectively. But since
they spend from the same output in tfund, only one of them can be confirmed in the blockchain.
Bob will therefore always choose the last payment transaction, since it is the one that pays him
the most. It is also the one that reflects the correct balance between Alice and Bob inside this
channel. All of the previous payment transactions can simply be discarded, but it is Bob’s re-
sponsibility to e.g. not accidentally broadcast an old payment transaction to the Bitcoin net-
work, Bob should also close the channel before the locktime specified in Pfund expires. He
simply broadcasts his last received payment transaction by providing an input program as fol-
lows:� �
provide "<Alice 's signature >";
provide "<Bob's signature >";
provide true;� �

The problem is that Alice can only send payments to Bob. The other way around does not
work with this setup, since Bob and Alice will both favour a transaction, which sends them-
selves the most money, even if it would reflect an old state of balances. But this can be worked
around with more sophisticated techniques, and are presented in the following section.

LightningNetwork

LightningNetwork provides the possibility to send bitcoins without the necessity to broadcast
the transaction to the Bitcoin network. This may sound paradoxal, but can be done without
trust in any other participant, even through means of different intermediary nodes. It is an
example of how flexible the possibilities are solely by using Script and the transaction model.

Scalability issues

The idea behind the Lightning Network came up in regard to the scalability of the Bitcoin net-
work, a topic that will be discussed briefly in Chapter 9. Just as for the micropayment channel,
not all transactions of the Lightning Network have to be broadcasted to the Bitcoin network.
This saves bandwidth and allows for a lot of transactions to happen even though the network
capacity is at the time of this writing limited to about three transactions per second. By open-

126 8. Applications and implementations

ing a single channel, Alice and Bob can send each other bitcoins forth and back without the
need for transactions to actually confirm in the blockchain or paying a transaction fee. The
trust less security is guaranteed by the ability for any one of them to close the channel at any
time, independently on the other party. This would settle the current state of their balances on
the blockchain, implicitly returning the correct amount to each of them. If one of them would
try to cheat by broadcasting an old state of balances, this party will be maximally penalized by
losing all their money put into this channel to the other party.

There exist different ways of realizing this idea. The most efficient one is presented and
relies on the immalleability of transaction hashes. This is not yet possible with Bitcoin, but a
change to the protocol that is being introduced the time of this writing, would make every-
thing presented in the following directly possible. The change that is needed will be outlined
in the following when applicable, and is discussed withmore details in Chapter 9. The assump-
tion of immalleability is, that a transaction hash, and hence the id, cannot even be changed for
transactions that are not yet confirmed in the blockchain. Immalleability can be introduced by
assuming that the scriptSig part of a transaction is not part of its hash value. This is assumed in
the following constructions.

This assumption allows to reliably construct whole chains of transactions originating from
some unconfirmed outputs in the blockchain, as long as the transactions in the chain cannot
be double spent before eventually entering the blockchain.

For simplicity we will in the description below always omit adding a transaction fee, al-
though they should normally always be included.

Funding transaction

Alice andBob create in the followingway a funding transaction toopen a channel between each
other in the LightningNetwork. Let us assume that each party wants to lock 0.5 bitcoins in the
channel. Then the funding transaction contains two inputs inwhich each contributeswith their
0.5 bitcoins. The output to the funding transaction is a single 2-of-2 multisignature output, so
it can only be spend by a transaction that contains both their signatures in the input program.
The funding transaction can be modelled as tfund = (Ĩ , O, 0), where Ĩ are the inputs of Alice
and Bob containing e.g. 0.5 bitcoins each, and the outputO = (Pfund, 1) sends the whole one
bitcoin to the program Pfund, which is simply a 2-of-2 multisignature, as seen in Listing 8.9.

8.2. Programmable transaction chains 127� �
input sigA:Signature;
input sigB:Signature;
checkMultiSig(sigA, sigB | "pubA", "pubB");� �

Listing 8.9: Pfund simply creates a 2-of-2 multisignature between Alice and Bob.

Commitment transactions

Theoutput programPfund of the funding transaction is different to themicropayment channel,
as the funding transaction does not directly contain a hook for Alice or Bob to get a refund if
the other party should become uncooperative. Therefore, before they both sign and broadcast
the funding transaction tfund, they each also create their version of a so called commitment
transaction, denoted as C1a and C1b for Alice and Bob respectively.

Both C1a and C1b spend from the funding transaction tfund. But as has been pointed out
previously, we will assume that the hash of the funding transaction tfund, which C1a and C1b
are referencing inside their inputs, can be calculated, even though tfund does not yet contain its
input programs. Another important thing to notice is that both C1a and C1b spend from the
same output, and therefore only one of them can become valid in the blockchain. But since
C1a andC1b are distinguishable and only Alice (Bob) can broadcast C1a (C1b), this will later
turn out to be used to prove which party did close the channel.

The commitment transactions C1a and C1b will each contain two outputs. C1a, which
Alice creates, contains one output that directly paysBobback his 0.5 bitcoins. Theother output
is of 0.5 bitcoins with a 2-of-2 multisignature between Alice and Bob and a relative locktime
requirement to giveAlice sole control fromsome timeafter the transactionwas confirmed. This
last output is similar to the output of a micropayment channel, but uses the sequence number
as a relative relative locktime.

Thecommitment transactionsC1a andC1bmust nowbe exchanged. Theother partymust
then partially sign and return it again, making it possible for the other party to create a valid in-
put program to their commitment transactions byprovidingboth signatures. Thecommitment
transactions now act as security against the other party becoming uncooperative, in which case
the commitment transaction can be broadcasted to the network and after confirmation would
return the money. Figure ?? shows the construction so far.

Formally, C1a = (Ifund, Õ, 0), where input Ifund = (hfund, 0, Sfund, 0) references the
funding transaction tfund and the input program Sfund simply provides both Alice’s and Bob’s

128 8. Applications and implementations

Figure 8.2.3: Alice and Bob fund a funding transaction, but do not provide valid input
programs yet. Commitment transactions C1a and C1b are constructed that spend from
the funding transaction and could settle the balances. Alice and only broadcast C1a, and
Bob only C1b, deoted by the colouring.

signature. The outputs Õ = (O1, O2), with O2 containing a locktime multisignature output
program P2, which can be seen in Listing 8.10, and is similar to a micropayment channel.

Revocable Delivery transactions

If the commitment transaction C1a were to be broadcasted and confirmed, then through the
first output O1 Bob would immediately receive his funds back. But for Alice to get her 0.5
bitcoins back, she would need Bobs approval on any transaction spending from the second

� �
input sigA:Signature;
input sigB:Signature;
input option:Boolean;
if(option) {

checkMultiSig(sigA, sigB | "pubA", "pubB");
} else {

checkSequence(430);
checkSig(sigA, "pubA")

}� �
Listing 8.10: P2 creates a 2-of-2 multisignature between Alice and Bob with a relative
timelock giving Alice sole control of the output after that time.

8.2. Programmable transaction chains 129

Figure 8.2.4: If any party broadcast their commitment transaction, then the other party
immediately received their money from its first output. After the relative locktime (three
days) have passed, the Revocable Delivery transaction could be used without cooperation
from the other party to receive the funds that are tied up in the locktimed multisignature
output.

output O2 of C1a, by providing an input program with both hers and Bobs signature. But if
the relative locktimewas set to e.g. 430 blocks, thenAlice canwithout Bobs cooperation spend
from this output of C1a after it has reached maturity, solely by providing her own signature.
This transaction will be referred to as a Revocable Delivery transaction, RD, and is similar to the
refund transaction of a micropayment channel.

Any party has with C1a, respectively C1b, the ability to close the channel, and allow the
other party to immediately receive their current amount of money. The party that closes the
channel would have to wait until the relative locktime is expired, after which their RD transac-
tion could be used to receive their money. Normally though, the other party would be coop-
erative and sign a spending transaction before the locktime has expired, so that the other party
does not have to wait until using their RD transaction. The other party cannot steal anymoney,
since it would require both signatures. The construction can be seen in Figure 8.2.4. Since the
programs for RD transactions are very similar to a refund transaction in a micropayment chan-
nel, they are not further specified.

130 8. Applications and implementations

Breach Remedy transaction

What if Alicewants to send 0.1 bitcoins toBobwithin this channel? Then they create a newpair
of commitment transactions to reflect the updated balances. Alice creates a commitment trans-
action C2a, where now one output would send 0.6 bitcoins immediately to Bob, and the other
output of 0.4 bitcoins is again amultisignature output with a relative locktime afterwhichAlice
solely controls that output. Bob does the same, but with an output paying 0.4 bitcoins directly
to Alice and instead locking his 0.6 bitcoins into a relative locktimemultisignature output. Just
as before, they exchange those unsigned commitment transactions to have them returned by
the other party partially signed. The new commitment transactions now reflect the current
balances.

But the old commitment transactions reflecting old balances could still become confirmed
when broadcasted to the Bitcoin network. Alice and Bob therefore also need to provide some
kind of guarantee to never broadcast a previous commitment transaction. Each party creates
and partially signs a so called Breach Remedy transaction, BR1a and BR1b for Alice and Bob
respectively, and sends them to the other party. The BR transactions spend from the relative
timelocked multisignature output of their commitment transaction. But since they contain
both signatures in their input program, they would become immediately confirmed after the
commitment transaction was confirmed, and would not have to wait for maturity as was the
case for the RD transactions.

If Alice or Bobwould broadcast a deprecated commitment transaction, that partywould be
penalized by losing all their money from the other party using their BR transaction to obtain it.
This can be seen in Figure 8.2.5. The BR transaction is similar to a payment transaction within
a micropayment channel.

As a technical side note, the public keys which Alice and Bob use in themultisignature out-
puts must be different for every new commitment transaction they create. If Bob now wants
to send 0.1 bitcoins back to Alice, then the balance must change back to 0.5 bitcoins to each
of them. They just create new commitment transactions C3a and C3b reflecting this balance,
and the locktimedmultisignature outputwill use keys that are different fromany previous com-
mitment transactions. Therefore the hash of every commitment transaction differs and the ex-
changed Breach Remedy transactions can only be used for the commitment transactions they
are intended for.

8.2. Programmable transaction chains 131

Figure 8.2.5: By signing the other parties Breach Remedy transaction, they agree upon
to never broadcast a previous commitment transaction. The construction shows the state
in which the balances are in respect to the commitment transaction C2a and C2b. The
colour indicates which party can broadcast what transactions. If any one should broadcast
an old commitment transaction C1a or C1b, then the other party can immediately receive
all funds from their Breach Remedy transaction.

132 8. Applications and implementations

Routing transactions

The construction so far works for exactly two parties who can interact with each other to both
send and receive bitcoins within the channel, without broadcasting each transaction to the Bit-
coin network. But what if Alice wants to send money to Chuck, but Chuck and Alice do not
have an open channel with each other? Wewould like for channel transactions to be able to be
routed through the network. If Bob for example already has a channel with Chuck, then Alice
could payBob andBob could payChuck, insteadof requiringAlice andCharlie to have anopen
channel together. The difficulty lies in doing this in a trust less manner, and solely relying on
the Blockchain as the final “mediator”.

The construction is extended with Hashed Timelock Contracts (HTLCs). They are in fact
similar to the hash-based puzzle transactions discussed in Chapter 6 and the Zero Knowledge
Contingent payments we saw in the beginning of this chapter. The purpose of a HTLC is to
allow for global state across multiple nodes via hashes. This global state is ensured by time
commitments and time-based unencumbering of resources via disclosure of preimages. Trans-
actional “locking” occurs globally via commitments. And at any point in time, a single party
is responsible for disclosing to the next party whether they have knowledge of some preimage.
This construction does neither require trust in one’s counterparty, nor any other party in the
network. If something goes wrong the HTLC can be revoked.

A HTLC is a program in an additional output of a commitment transaction. It is similar
to the output program of a ZKP.The first two outputs in a commitment transaction reflect the
balances of each party in the channel. We already sawhow sending bitcoinswithin this channel
corresponds to updating the balances, reflected by chainging the output values of the new pair
of commitment transactions accordingly. Now if Alice wants to route bitcoins through Bob,
they would have to construct a new pair of commitment transactions, of which the first output
reflects the unchanged balance of Bob, and the second depending on the amount Alice wants
to route through Bob contains the changed balance of Alice. The programs used for these two
outputs are just as described previously for commitment transactions. But a third, new output
in the commitment transactions will additionally contain the amount Alice wants to route. It
is locked to the HTLC, and for Bob to spend this output, he will have to provide a proof that
he is forwarding Alice’s payment to the next intermediary in the path.

The high-level idea behind it will be presented in the following. Assume that Alice wants
to pay 0.1 bitcoins to Chuck through the intermediary Bob, that has an open channel with

8.2. Programmable transaction chains 133

Figure 8.2.6: Illustration of the routing of transactions in the Lightning Network. Blue
lines represent open channels between parties. Dotted arrows denotes HTLC payments,
and straight arrows regular payments inside the channel.

both Alice andChuck. In fact, there could be any number of intermediaries between Alice and
Chuck. Chuck creates a random number R and hashes it, which results in H . He then gives
H to Alice, but keepsR private. Then Alice creates a contract within the channel she has with
Bob, paying him 0.1 bitcoins if the knowsR, the preimage ofH . Bob will then create a similar
contract inside the channel he has with Chuck (or the next intermediary), paying 0.1 bitcoins
to Chuck if he knowsR, and Chuck knowsR.

If Chuck tries to obtain themoney by broadcasting the payment contract, hemust revealR.
This mechanism is embedded into the output script of that contract, just like in a hash-based
puzzle transaction or Zero-Knowledge Contingent Payment. And since R must be revealed,
all the other payments that are conditional onR can also happen. See Figure 8.2.6 for a simple
representation of routing transactions.

Formally, the new pair of commitment transactions could in continuation of our example
for Alice and Bob be denoted asC4a andC4b. They contain the following structureC4a =

(Ifund, Õ, 0), where Ifund refers to the funding transaction, just as for all the other commitment
transactions. The output Õ contains three outputs. O1 reflects Bob’s unchanged balance, and
O2 contains Alice’s balance in accordance to the payment she wants to route. Recall that O1

pays Bob immediately, whileO2 contains the locktimedmultisignature for which Alice can ob-
tain her money with a RD transaction after the relative locktime has passed. So far everything
is as before. But the third outputO3 contains theHTLC,which sends the amount to be routed.
LetO3 = (P3, 0.1) in this example. The output programP3 is similar to the Zero-Knowledge

134 8. Applications and implementations� �
input sigA:Signature;
input sigB:Signature;
input R:String;
if(sha256(R)=="H") {

checkSig(sigB, "pubB");
} else {

checkSequence(430);
checkSig(sigA, "pubA")

}� �
Listing 8.11: P3 creates the HTLC output.

Contingen Payment discussed earlier, just with a relative locktime. See Listing 8.11.

A similar HTLC output is constructed inside the channel of Bob and Chuck. After that
point, Chuck is the only one who knows R. But Bob knows that as soon as Chuck would
spend the HTLC output, Chuck would have to reveal R. This would immediately allow Bob
to spend from the HTLC output he has with A, and hence in no way lose any money. There
is one detail regarding the involved relative locktimes used inside each HTLC. TO not allow
for timing attacks to become possible, the locktime requirements inside each HTLC should
decrease between each intermediary. But this will not be discussed further.

But instead of broadcasting the commitment transaction, Chuck can just tell Bob what
R is. To avoid broadcasting any transaction, Bob would after knowing R be willing to send
that payment to Chuck within his channel without further conditions. This can be done in the
usualway by creating commitment transactions that now reflect those balanceswithout the use
of an HTLC output. To avoid broadcasting any transaction onto the blockchain, Bob would
reveal R to Alice and she would feel confident in now updating the balance in the channel
with Bob in the same way, since the knowledge of R proves to Alice that Chuck has received
the money by revealing it. So after R was revealed to every party, the states can simply be
cleared out to not keep track of all potential new routing of payments. If any party should
become unresponsive, the commitment transaction could be broadcasted; and the payment
would either be forwarded through the knowledge ofR, or it terminates and the money could
be returned due to the relative locktime.

Nevertheless, since the liquidity is bounded by the total amount locked in a channel, some
channels may have to be closed after some time. After settling the balances on the blockchain,
a new channel could be opened with new liquidity.

8.3. Discussion of applications 135

8.3 Discussion of applications

The Lightning Network design is only based on the Script language. It is probably one of the
best examples to show how the Bitcoin protocol can be extended and improved, simply from
the possibilities provided by the Script language. Due to the limitations that the decentralized
nature of Bitcoin brings, it may simply in the close future not be possible to achieve the same
level of transactions that VISA has (around 1000 transactions/sec). But by constructing trans-
actions in a clever way, and with the possibilities of Script, a new layer such as Lightning Net-
work was suddenly created. It completely relies on the Bitcoin network, but allows for scaling
even far beyond what VISA currently needs. Paul Buchheit made a good analogy comparing
Bitcoin to the tcp/ip protocol of the Internet, for which all kinds of new protocols can be de-
veloped.

But the Lightning Network needs new opcodes, and updates to consensus rules, to work
properly. Those are currently being introduced to Bitcoin and will be discussed in the next
chapter. The Lightning Network is only the tip of the iceberg of what may become possible
with those small changes.

There is another idea called Sidechains, which uses Script to createwhat is called a 2-way peg.
The idea would make it possible to send bitcoins to “other blockchains”. Another blockchain
could be used for potential different purposes, maybe it uses a different scripting language, or
maybe it is the beta version of Bitcoin, which implements new features butmay not be as stable.
The rules can be whatever those running that sidechain want them to be. Then bitcoins could
be send to some specially formed address, which is designed so that it is now out of control of
the sender, and anybody else. They are completely immobilized and can only be unlocked if
somebody can prove they are no longer being used elsewhere, in particular another blockchain.

Once this immobilisation transaction is sufficiently confirmed, you send a message to the
other blockchain, the one you want to use. This message contains a proof that the coins were
sent to that special address on the Bitcoin network, that they are therefore immobilized, and
crucially, that you were the one who did it. The sidechain creates the exact same number of
tokens on its own network and gives you control of them.

The logic above is symmetric. So, at any point, whoever is holding these coins on the
sidechain can send them back to the Bitcoin blockchain by creating a special transaction on
the sidechain that immobilises the coins on the sidechain. They’ll disappear from the sidechain
and become available again in Bitcoin, under the control of whoever last owned them on the

136 8. Applications and implementations

sidechain.
Such a sidechain project is among other being developed by a company called RSK Labs,

which wants to extend the Script language of Bitcoin with a turing-complete language. This
would allow to move some amount of bitcoins to the sidechain should a contract be needed
where a turing-complete language is necessary. After the contract terminates, those coins could
then be directly swapped back to “normal” bitcoins.

Bitcoin will do to banks what email did to the postal industry.

Rick Falkvinge

9
What does the future hold?

Changes to the Bitcoin protocol, and in particularly to Script, would be trivial to do
with a hard fork. As discussed in Chapter 5, a hard fork applies new rules to the protocol after
which it could become irreconcilably divided. The “old” version and “new” version of Bitcoin
could then emerge as distinct projects thereafter. But some changes can be rolled out as soft
forks, which guarantees that the nodes running the old version oblivious about the changes
will still accept all the validations of the nodes running the new version. A soft fork is possible
if the new rules allow a subset of the previous rules.

In the following, a change to the Bitcoin protocol called Segregated Witness will be pre-
sented, which was proposed in December 2015 by the developers Pieter Wuille et al. [26]. It
is an important change, which among other allows the implementation of some applications
discussed in Chapter 8. The changes regard the underlying structure of transactions and are
very extensive. But as will be shown, Segregated Witness can nevertheless be rolled out with a
soft fork, and easily be used in our model of Bitcoin transactions.

138 9. What does the future hold?

9.1 Restructuring: SegregatedWitness

SegregatedWitness involves a restructuring of the transaction data, such that they become im-
malleable, and at the same time adds the ability to change the Script language in any desired
way, without requiring a hard fork.

As previously discussed, the transaction hash is calculated by using the whole data struc-
ture of the transaction, including the scriptSig part that typically contains signatures. But since
a signature cannot sign itself, it is of course excluded from the data it signs. Simply by regener-
ating a signature, the transaction id would change even though the transaction is not function-
ally different. This makes it difficult to rely on chains of unconfirmed transactions, which as
discussed in Section 8.2 is required for the Lightning Network.

Just for clarification, it should be stressed out that as soon as a transaction is included with
a block to the Blockchain, it can of course not change its id anymore, since the blockchain is an
append-only ledger. Therefore references to transactions that are confirmed in the blockchain
are of course reliable!

Segregated Witness solves the problem of immalleability, by moving the scriptSig “out” of
the transaction. The “new” transactions using this change must have all their scriptSig fields
in its inputs set to empty. To distinguish between “old” and “new” transaction structures, the
“new” transactions should use a new version number. Attached to the new transaction struc-
ture is then the so called segregated witness data, which is not part of the transaction hash and
consists of nothing more than the scriptSig data.

But since now the scriptSig is empty, also the scriptPubKey must change in order for old
nodes oblivious about SegregatedWitness to accept the new transactions as valid. Nodes in the
Bitcoin network using Segregated Witness will only forward them to other new nodes, while
old nodes will receive the transaction structure without the segregated witness part. For those
old nodes the new transactions will look like Anyone-Can-Spend transactions.

The scriptPubKey for this new type of transaction can be one of two types. The first is
like a Pay-To-PubKey-Hash, but instead of actually being a Script program, only the 20 byte
HASH160 value of a public key is pushed inside the scriptPubKey. A segregated witness then
simply provides the signature and public key, which hashed must yield the hash value from
the scriptPubKey. Other than the push operations, there is in other words no Script opcodes
directly involved in this transaction type. The transaction type is simply recognized by its pat-
tern, and consensus rules dictate how to treat the provided values, whichwill simulate the same

9.2. Academic recognition 139

execution as for Pay-To-PubKey-Hash programs.
The other type is like a Pay-To-Script-Hash. The scriptPubKey consists of the 32 byte

SHA256 value of a Script program. The segregated witness to spend such an output will then
provide input values followed by a serialized script whose hash matches the value from the
scriptPubKey. Just as with P2SH, the serialized script is deserialized and evaluated for the in-
put values and must return true.

There is another detail worth mentioning. Not only is there a hash value inside the script-
PubKey. Also a 1 byte version is prepended to the hash value. The rules defined above corre-
sponds to version 1. This is represented in the scriptPubKey by a call of OP_0 before the actual
push of the hash value. Furthermore, a rule of SegregatedWitness is that if a node encounters a
version byte it does not know any rules to, it interprets the output as an Any-One-Can-Spend.

In a similar way to how the rules could be changed to allow for Segregated Witness, new
versions of Segregated Witness can be easily rolled out as soft forks using the version bytes,
and allow for arbitrary changes to the Script language. In fact a new Script language would be
defined with every new version of Segregated Witness, but which in the first version is very
much like the current one. This is a huge improvement to the Bitcoin protocol, in which as
mentioned in Section 6.2, updates to Script can currently only be done for beforehand reserved
opcodes, and are of limited behaviour.

But the Bitcoin community is not yet in complete agreement regarding some of the details
of SegregatedWitness. Nevertheless a lot of applications are already developed relying on Seg-
regatedWitness, and it is a very concrete proposal whichmay probably become a reality within
the very near-term future.

As the underlying behaviour does not change with Segregated Witness, our formal model
could easily be used after those changes would be applied. The construction holding the script-
Sig would instead just be the segregated witness. Two small rules should simply be added to
allow for the new specific programs that Segregated Witness uses.

9.2 Academic recognition

Bitcoin is starting to receive more and more academic attention. The University of Pittsburgh,
in partnershipwithMIT, announced inSeptember 2015 the first cryptocurrency scholarly jour-
nal called Ledger, which will be peer reviewed and open access.

It will feature full-length papers not only on Bitcoin, but also written about studies of cryp-

140 9. What does the future hold?

tocurrency in general and blockchain technology. It can bring together multiple disciplines
from computer science, economics, sociology, physics, law and political science, to discuss
new ideas and research.

There are a lot of spaces online to discuss new and ongoing issues in cryptocurrencies, but
they can sometimes lack the accountability of an open system of peer review. The issue of the
first volume of Ledger is awaited with great anticipation!

Appendices

A
List of opcodes

This appendix shows some rules to opcodes

ṽ, OP_NOP.P → ṽ, P
OP_NOP : No operation / skip

ṽ :: vn−1 :: vn, OP_NIP.P → ṽ :: vn, P
OP_NIP : Removes the second-to-top stack item.

OP_OVER: Copies the second-to-top stack item to the top.

ṽ :: vn−1 :: vn, OP_OV ER.P → ṽ :: vn−1 :: vn :: vn−1, P
OP_OVER

i ∈ I, ṽ = v1 :: v2 :: · · · :: vn
ṽ :: i, OP_PICK.P → ṽ :: vi, P

OP_PICK : The item i back in the stack is copied to the top.

OP_ ROLL: The item i back in the stack is moved to the top.

ṽ = v1 :: · · · :: vn, ṽ′ = v1 :: · · · :: vi−1 :: vi+1 :: · · · :: vn
ṽ :: i, OP_ROLL.P → ṽ′ :: vi, P

OP_ROLL

144 A. List of opcodes

OP_ROT: The top three items on the stack are rotated to the left.

ṽ :: v1 :: v2 :: v3, OP_ROT.P → ṽ :: v2 :: v3 :: v1, P
OP_ROT

OP_ SWAP: The top two items on the stack are swapped.

ṽ :: v1 :: v2, OP_SWAP.P → ṽ :: v2 :: v1, P
OP_SWAP

OP_TUCK: The item at the top of the stack is copied and inserted before the second-to-
top item.

ṽ :: v1 :: v2, OP_TUCK.P → ṽ :: v2 :: v1 :: v2, P
OP_TUCK :

ṽ :: v1 :: v2, OP_2DROP.P → ṽ, P
OP_2DROP : Removes the top two stack items.

ṽ12 = v1 :: v2
ṽ :: ṽ12, OP_2DUP.P → ṽ :: ṽ12 :: ṽ12, P

OP_2DUP : Duplicates the top two stack items.

OP_3DUP: Duplicates the top three stack items.

ṽ123 = v1 :: v2 :: v3
ṽ :: ṽ123, OP_3DUP.P → ṽ :: vṽ123 :: ṽ123, P

OP_3DUP

OP_2OVER: Copies the pair of items two spaces back in the stack to the front.

ṽ :: v1 :: · · · :: v4, OP_2OV ER.P → ṽ :: v1 :: · · · :: v4 :: v1 :: v2, P
OP_2OVER :

OP_2ROT: The top six items on the stack are rotated two to the left.

ṽ :: v1 :: · · · :: v6, OP_2ROT.P → ṽ :: v3 :: · · · :: v6 :: v1 :: v2, P
OP_2ROT :

OP_ 2SWAP: Swaps the top two pairs of items.

ṽ :: v1 :: v2 :: v3 :: v4, OP_2SWAP.P → ṽ :: v3 :: v4 :: v1 :: v2, P
OP_2SWAP

OP_EQUALVERIFY: Same as OP EQUAL, but runs OP VERIFY afterwards.

145

ṽ, OP_EQUALV ERIFY.P → ṽ, OP_EQUAL.OP_V ERIFY.P
OP_EQUALVERIFY :

ṽ :: vn, OP_1ADD.P → ṽ :: vn + 1, P
OP_1ADD : 1 is added to the input.

ṽ :: vn, OP_NEGATE.P → ṽ :: −vn, P
OP_NEGATE : The sign of the input is flipped.

ṽ :: vn, OP_ABS.P → ṽ :: |vn|, P
OP_ABS : The input is made positive.

OP_NOT: If the input is 0 or 1, it is flipped. Otherwise the output will be 0.

vn = 0
ṽ :: vn, OP_NOT.P → ṽ :: 1, P

OP_NOT_1

vn ̸= 0

ṽ :: vn, OP_NOT.P → ṽ :: 0, P
OP_NOT_0

vn = 0
ṽ :: vn, OP_0NOTEQUAL.P → ṽ :: 0, P

OP_0NOTEQUAL_0

vn ̸= 0

ṽ :: vn, OP_0NOTEQUAL.P → ṽ :: 1, P
OP_0NOTEQUAL_1

In the following it is assumed that a ↓ n1 and b ↓ n2 and x ↓ n3 holds true.

a+ b ↓ c

ṽ :: a :: b, OP_ADD.P → ṽ :: c, P
OP_ADD : a is added to b.

a− b ↓ c

ṽ :: a :: b, OP_SUB.P → ṽ :: c, P
OP_SUB : b is subtracted from a.

a ̸= 0 ∧ b ̸= 0

ṽ :: a :: b, OP_BOOLAND.P → ṽ :: 1, P
OP_BOOLAND

146 A. List of opcodes

a = 0 ∨ b = 0
ṽ :: a :: b, OP_BOOLAND.P → ṽ :: 0, P

OP_BOOLAND

OP_ BOOLOR: If a or b is not 0, the output is 1. Otherwise 0.

a ̸= 0 ∨ b ̸= 0

ṽ :: a :: b, OP_BOOLOR.P → ṽ :: 1, P
OP_BOOLOR1

a = 0 ∧ b = 0
ṽ :: a :: b, OP_BOOLOR.P → ṽ :: 0, P

OP_BOOLOR0

OP_ NUMEQUAL: Returns 1 if the numbers are equal, 0 otherwise.

a = b
ṽ :: a :: b, OP_NUMEQUAL.P → ṽ :: 1, P

OP_NUMEQUAL1

a ̸= b

ṽ :: a :: b, OP_NUMEQUAL.P → ṽ :: 0, P
OP_NUMEQUAL0

OP_NUMNOTEQUAL: Returns 1 if the numbers are not equal, 0 otherwise.

a ̸= b

ṽ :: a :: b, OP_NUMNOTEQUAL.P → ṽ :: 1, P
OP_NUMNOTEQUAL_1

a = b
ṽ :: a :: b, OP_NUMNOTEQUAL.P → ṽ :: 0, P

OP_NUMNOTEQUAL_0

OP_ LESSTHAN_ 1: Returns 1 if a is less than b, 0 otherwise.

a < b
ṽ :: a :: b, OP_LESSTHAN.P → ṽ :: 1, P

OP_LESSTHAN_1

a ≥ b
ṽ :: a :: b, OP_LESSTHAN.P → ṽ :: 0, P

OP_LESSTHAN_0

OP_GREATERTHAN: Returns 1 if a is greater than b, 0 otherwise.

a > b
ṽ :: a :: b, OP_GREATERTHAN.P → ṽ :: 1, P

OP_GREATERTHAN_1

a ≤ b
ṽ :: a :: b, OP_GREATERTHAN.P → ṽ :: 0, P

OP_GREATERTHAN_0

OP_LESSTHANOREQUAL: Returns 1 if a is less than or equal to b, 0 otherwise.

147

a ≤ b
ṽ :: a :: b, OP_LESSTHANOREQUAL.P → ṽ :: 1, P

OP_LESSTHANOREQUAL_1

a ≰ b

ṽ :: a :: b, OP_LESSTHANOREQUAL.P → ṽ :: 0, P
OP_LESSTHANOREQUAL_0

OP_GREATERHANOREQUAL: Returns 1 if a is greater than or equal to b, 0 otherwise.

a ≥ b
ṽ :: a :: b, OP_GREATERTHANOREQUAL.P → ṽ :: 1, P

OP_GREATERTHANOREQUAL_1

a ≱ b

ṽ :: a :: b, OP_GREATERTHANOREQUAL.P → ṽ :: 0, P
OP_GREATERTHANOREQUAL_0

a < b
ṽ :: a :: b, OP_MIN.P → ṽ :: a, P

OP_MIN_0 : Returns the smaller of a and b.

a ≥ b
ṽ :: a :: b, OP_MIN.P → ṽ :: b, P

OP_MIN_1 : Returns the smaller of a and b.

a > b
ṽ :: a :: b, OP_MAX.P → ṽ :: a, P

OP_MAX_0 : Returns the larger of a and b.

a ≤ b
ṽ :: a :: b, OP_MAX.P → ṽ :: b, P

OP_MAX_1 : Returns the larger of a and b.

OP_WITHIN: Returns 1 if x is within the specified range (left-inclusive), 0 otherwise.

a ≤ x ∧ x < b
ṽ :: x :: a :: b, OP_WITHIN.P → ṽ :: 1, P

OP_WITHIN_1

a > x ∨ x ≥ b
ṽ :: x :: a :: b, OP_WITHIN.P → ṽ :: 0, P

OP_WITHIN_0

OP_ RIPEMD160:The input is hashed using RIPEMD-160.

ṽ :: vn, OP_RIPEMD160.P → ṽ :: ripemd160(vn), P
OP_RIPEMD160

OP_ SHA1: The input is hashed using SHA1.

148 A. List of opcodes

ṽ :: vn, OP_SHA1.P → ṽ :: sha1(vn), P
OP_SHA1

OP_ SHA256: The input is hashed using SHA256.

ṽ :: vn, OP_SHA256.P → ṽ :: sha256(vn), P
OP_SHA256

OP_HASH160: The input is hashed twice: first with SHA-256 and then with RIPEMD-
160.

ṽ :: vn, OP_HASH160.P → ṽ :: sha256(ripemd160(vn)), P
OP_HASH160

OP_HASH256: The input is hashed two times with SHA-256.

ṽ :: vn, OP_HASH256.P, → ṽ :: sha256(sha256(vn)), P,
OP_HASH256

References

[1] Gavin Andresen. Bip16: Pay to script hash. http://web.archive.org/web/
20160207225440/https://github.com/bitcoin/bips/blob/master/
bip-0016.mediawiki. Accessed: 2016-02-07.

[2] Marcin Andrychowicz, Stefan Dziembowski, Daniel Malinowski, and Lukasz Mazurek.
Secure multiparty computations on bitcoin. In Security and Privacy (SP), 2014 IEEE
Symposium on, pages 443–458. IEEE, 2014.

[3] Andreas M. Antonopoulos. Mastering Bitcoin, Unlocking Digital Cryptocurrencies.
O’Reilly Media, 2014.

[4] Adam Back et al. Hashcash-a denial of service counter-measure, 2002.

[5] Martin J. Bailey. The welfare cost of inflationary finance. Journal of Political Economy, 64
(2):93–110, 1956.

[6] BtcDrak, Mark Friedenbach, and Eric Lombrozo. Bip112: Checksequencev-
erify. http://web.archive.org/web/20160521104127/https://github.
com/bitcoin/bips/blob/master/bip-0112.mediawiki. Accessed: 2016-05-
21.

[7] David Chaum, Amos Fiat, and Moni Naor. Untraceable electronic cash. In Proceedings
on Advances in cryptology, pages 319–327. Springer-Verlag New York, Inc., 1990.

[8] Andrea Corbellini. Elliptic curve cryptography: a gentle introduction. https://web.
archive.org/web/20150521005117/http://andrea.corbellini.name/
2015/05/17/elliptic-curve-cryptography-a-gentle-introduction/?
Accessed: 2015-05-21.

[9] Wei Dai. b-money, an anonymous, distributed electronic cash system.
http://web.archive.org/web/20151105064709/http://www.weidai.
com/bmoney.txt. Accessed: 2015-11-05.

[10] Cynthia Dwork and Moni Naor. Pricing via processing or combatting junk mail. In
Advances in Cryptology—CRYPTO’92, pages 139–147. Springer, 1992.

http://web.archive.org/web/20160207225440/https://github.com/bitcoin/bips/blob/master/bip-0016.mediawiki
http://web.archive.org/web/20160207225440/https://github.com/bitcoin/bips/blob/master/bip-0016.mediawiki
http://web.archive.org/web/20160207225440/https://github.com/bitcoin/bips/blob/master/bip-0016.mediawiki
http://web.archive.org/web/20160521104127/https://github.com/bitcoin/bips/blob/master/bip-0112.mediawiki
http://web.archive.org/web/20160521104127/https://github.com/bitcoin/bips/blob/master/bip-0112.mediawiki
https://web.archive.org/web/20150521005117/http://andrea.corbellini.name/2015/05/17/elliptic-curve-cryptography-a-gentle-introduction/?
https://web.archive.org/web/20150521005117/http://andrea.corbellini.name/2015/05/17/elliptic-curve-cryptography-a-gentle-introduction/?
https://web.archive.org/web/20150521005117/http://andrea.corbellini.name/2015/05/17/elliptic-curve-cryptography-a-gentle-introduction/?
http://web.archive.org/web/20151105064709/http://www.weidai.com/bmoney.txt
http://web.archive.org/web/20151105064709/http://www.weidai.com/bmoney.txt

150 References

[11] Ittay Eyal and Emin Gün Sirer. Majority is not enough: Bitcoin mining is vulnerable. In
Financial Cryptography and Data Security, pages 436–454. Springer, 2014.

[12] Pesech Feldman and Silvio Micali. An optimal probabilistic protocol for synchronous
byzantine agreement. SIAM Journal on Computing, 26(4):873–933, 1997.

[13] Michael J. Fisher, Nancy A. Lynch, andMichael S. Paterson. Impossibility of distributed
consensus with one faulty process. Journal of the Assccktion for Computing Machinery, 32
(2):374–382, 1985.

[14] Mark Friedenbach, BtcDrak, Nicolas Dorier, and kinoshitajona. Bip68: Relative
lock-time using consensus-enforced sequence numbers. https://github.com/
bitcoin/bips/blob/master/bip-0068.mediawiki. Accessed: 2016-04-18.

[15] StuartHaber andWScottStornetta. Secure names for bit-strings. InProceedings of the 4th
ACM Conference on Computer and Communications Security, pages 28–35. ACM, 1997.

[16] Brian Hartley and Trevor O Hawkes. Rings, modules and linear algebra: a further course
in algebra describing the structure of Abelian groups and canonical forms of matrices through
the study of rings and modules. Chapman & Hall/CRC, 1970.

[17] John E. Hopcroft, RajeevMotwani, and Jeffrey D. Ullman. Introduction to Automata The-
ory, Languages, and Computation. Pearson, 2006.

[18] Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic cash system, 2008.

[19] Arvind Narayanan, Joseph Bonneau, Edward Felten, Andrew Miller, and Steven
Goldfeder. Bitcoin and Cryptocurrency Technologies. Princeton University Press, 2016.

[20] Rafael Pass. Lecture 21: Collision-resistant hash functions and general digital signature
scheme. https://www.cs.cornell.edu/courses/cs6830/2009fa/scribes/lecture21.pdf,
2009.

[21] Nick Szabo. Bit gold. http://web.archive.org/web/20150626152817/http:
//unenumerated.blogspot.com/2005/12/bit-gold.html. Accessed: 2015-
06-26.

[22] Peter Todd. Bip65: Checklocktimeverify. http://web.archive.org/web/
20160224213536/https://github.com/bitcoin/bips/blob/master/
bip-0065.mediawiki. Accessed: 2016-02-24.

[23] XiaoyunWang andHongboYu. How tobreakmd5andother hash functions. InAdvances
in Cryptology – EUROCRYPT 2005, volume 3494 of Lecture Notes in Computer Science,
pages 19–35, Aarhus, Denmark, 2005. Springer.

https://github.com/bitcoin/bips/blob/master/bip-0068.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0068.mediawiki
http://web.archive.org/web/20150626152817/http://unenumerated.blogspot.com/2005/12/bit-gold.html
http://web.archive.org/web/20150626152817/http://unenumerated.blogspot.com/2005/12/bit-gold.html
http://web.archive.org/web/20160224213536/https://github.com/bitcoin/bips/blob/master/bip-0065.mediawiki
http://web.archive.org/web/20160224213536/https://github.com/bitcoin/bips/blob/master/bip-0065.mediawiki
http://web.archive.org/web/20160224213536/https://github.com/bitcoin/bips/blob/master/bip-0065.mediawiki

References 151

[24] XiaoyunWang, Yiqun L. Yin, andHongbo Yu. Finding collisions in the full sha-1. InAd-
vances in Cryptology – CRYPTO 2005, volume 3621 of Lecture Notes in Computer Science,
pages 17–36, Santa Barbara, USA, 2005. Springer.

[25] Pieter Wuille. Bip62: Dealing with malleability. http://web.archive.org/
web/20160404165202/https://github.com/bitcoin/bips/blob/master/
bip-0062.mediawiki. Accessed: 2016-04-04.

[26] Pieter Wuille, Johnson Lau, and Eric Lombrozo. Bip112: Segregated wit-
ness. http://web.archive.org/web/20160521104121/https://github.
com/bitcoin/bips/blob/master/bip-0141.mediawiki. Accessed: 2016-05-
21.

http://web.archive.org/web/20160404165202/https://github.com/bitcoin/bips/blob/master/bip-0062.mediawiki
http://web.archive.org/web/20160404165202/https://github.com/bitcoin/bips/blob/master/bip-0062.mediawiki
http://web.archive.org/web/20160404165202/https://github.com/bitcoin/bips/blob/master/bip-0062.mediawiki
http://web.archive.org/web/20160521104121/https://github.com/bitcoin/bips/blob/master/bip-0141.mediawiki
http://web.archive.org/web/20160521104121/https://github.com/bitcoin/bips/blob/master/bip-0141.mediawiki

	Preface
	Glossary
	Introduction
	Mathematical prerequisites
	Hash functions
	Hash pointers
	Public-key cryptography
	Digital signatures

	I The system of Bitcoin
	A brief history of cryptocurrencies
	Transaction system
	A simple cryptocurrency: Version 1
	Data structure for Bitcoin transactions
	Bitcoin Addresses: The Account numbers of Bitcoin
	Proof of ownership of a Bitcoin address

	Decentralization using a distributed ledger
	Use of a public ledger with the simple cryptocurrency: Version 2
	General consensus protocols
	Making the simple crypocurrency decentralized: Version 3
	The Bitcoin Blockchain
	Changing consensus rules

	II A programming model
	The Script language
	A model for Script
	Script words – commands and functions
	Signature checking

	Variables and abstractions
	Variables
	Expressions
	Programs
	Type system
	Theoretical results
	Optimisations

	Applications and implementations
	Basic examples
	Programmable transaction chains
	Discussion of applications

	What does the future hold?
	Restructuring: Segregated Witness
	Academic recognition

	Appendices
	List of opcodes
	References

